On Stability of Polynomially Bounded Operators

G. Muraz
Institut Fourier, B.P. 74, 38402 St-Martin-d'Hères Cedex, France
E-mail:Gilbert.Muraz@ujf-grenoble.fr

Quoc Phong Vu
Department of Mathematics, Ohio University
Athens, OH 45701, USA
E-mail:qvu@math.ohiou.edu

Received December 26, 2005
We prove that if T is a polynomially bounded operator and the peripheral spectrum of T has zero measure, then $T^{n} x \rightarrow 0$ for all x in X if and only if T^{*} has no nontrivial invariant subspace on which it is invertible and doubly power bounded.

Key words: polynomially bounded operator, Banach space, invariant subspace.

Mathematics Subject Classification 2000: 47A15.

1. Introduction

Let X be a Banach space. A linear bounded operator T on X is called polynomially bounded if there exists a constant M such that

$$
\begin{equation*}
\|p(T)\| \leq M \sup _{|z| \leq 1}\|p(z)\| \tag{1}
\end{equation*}
$$

for every polynomial p.
It is a well known theorem of Sz . Nagy and C. Foias [8] that if X is a Hilbert space and T is a completely nonunitary contraction on X with spectrum $\sigma(T)$ such that $m(\sigma(T) \cap \Gamma)=0$, where Γ denotes the unit circle and m is the Lebesgue measure on Γ, then $\left\|T^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$, for all x in X. According to von Neumann's inequality (see e.g. [8]), every contraction operator T satisfies (1) with $M=1$, hence every contraction is a power bounded operator. However, G. Pisier [9] has shown that not every polynomially bounded operator on a Hilbert space is similar to a contraction. The proof of the above result of Sz. Nagy and C. Foias uses the theory of unitary dilations of contractions and, therefore, cannot be extended to polynomially bounded operators on a Hilbert space.
(C) G. Muraz and Q.Ph. Vu, 2007

In this note, we extend the Nagy-Foias theorem to polynomially bounded operators on Banach spaces.

Throughout the paper, D is the open unit dist, Γ is the unit circle and $A(D)$ is the disk algebra of functions analytic in D and continuous in \bar{D}.

2. The Limit Isometry

Let T be a power bounded operator on a Banach space X, i.e., T satisfies the condition $\sup _{n \geq 0}\left\|T^{n}\right\|<\infty$. By introducing the equivalent norm $\|\mid x\| \|=$ $\sup _{n \geq 0}\left\|T^{n} x\right\|$, we can always assume, without loss of generality, that T is a contraction. This implies that $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|$ exists for all x in X.

The following construction associates with T another Banach space E, a natural homomorphism Q from X to E and an isometry V on E such that $Q T=V Q$ and $\sigma(V) \subset \sigma(T)$. This construction has proved useful in many investigations on the asymptotic behavior of semigroups of operators (see [2, 7, 10-13]).

Lemma 1. Let T be a power bounded on a Banach space X. There exists a Banach space E, a bounded linear map Q of X into E with dense range, and an isometric operator V on E, with the following properties:

1) $Q x=0$ if and only if $\inf _{n \geq 0}\left\|T^{n} x\right\|=0$;
2) $Q T=V Q(s \in S)$;
3) $\sigma(V) \subset \sigma(T), P \sigma\left(V^{*}\right) \subset P \sigma\left(T^{*}\right)$.

The operator V in Lem. 1 is called the limit isometry of T. Recall the construction of E, Q and V. First, a seminorm on X is defined by

$$
l(x)=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|, x \in X .
$$

Let $L=\operatorname{ker}(l)=\{x \in X: l(x)=0\}$. Consider the quotient space $\widehat{X}=X / L$, the canonical homomorphism $Q: X \rightarrow \hat{X}, Q x=\hat{x}$, and define a norm in \widehat{X} by

$$
\hat{l}(\hat{x})=l(x), x \in X .
$$

The operators T generate the corresponding operator \widehat{T} on \widehat{X} in the natural way, namely

$$
\widehat{T} \hat{x}:=\widehat{T x}, x \in X
$$

Clearly, \widehat{T} is an isometric operator on the normed space \widehat{X}, since

$$
\hat{l}(\widehat{T} \hat{x})=\lim _{n \rightarrow \infty}\left\|T^{n}(T x)\right\|=\hat{l}(\hat{x}), x \in X .
$$

We denote by E the completion of \hat{X} in the norm \hat{l}, and by V the continuous extension of \widehat{T} from \widehat{X} to E. All properties 1)-3) can be verified directly.

An operator T is called stable, if the discrete semigroup $\left\{T^{n}\right\}_{n \geq 0}$ is stable, i.e., $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$ for all $x \in X$. Note that in the above construction the subspace E is nonzero if and only if T is nonstable. On the other hand, if $\inf _{n \geq 0}\left\|T^{n} x\right\|>0$ for all $x \in X, x \neq 0$, then T is said to be of class C_{1}. From $\sigma(V) \subset \sigma(T)$ it follows that if $\sigma(T)$ does not contain the unit circle, then $\sigma(V)$ also does not contain the unit circle, so that V is an invertible isometry.

3. Stability of $\left\{T^{n}\right\}$

An important property of polynomially bounded invertible isometries is that they possess a functional calculus for continuous functions on their spectra.

Lemma 2. Let V be a polynomially bounded invertible isometry on a Banach space E. Then the algebra $\mathcal{A}(V)$ is isomorphic to $C(\sigma(V))$.
Proof. It was shown in [6] that there is a homomorphism $\varphi: C(\Gamma) \rightarrow L(E)$ such that $\|\varphi\| \leq M$, i.e., there is a functional calculus on $C(\Gamma)$ which satisfies: $\|f(T)\| \leq M\|f\|_{\infty}$. Moreover, $f(T)$ is completely determined by its values on $\sigma(V)$, and the spectral mapping theorem holds: $\sigma(f(V))=f(\sigma(V))$. Therefore, the functional calculus can be defined for $C(\sigma(V))$, and we have

$$
\sup _{\lambda \in \sigma(V)}|f(\lambda)| \leq\|f(V)\| \leq M \sup _{\lambda \in \sigma(V)}|f(\lambda)|,
$$

i.e., the homomorphism is in fact an isomorphism.

Now let T be a polynomially bounded operator on a Banach space X. Assume that T is not stable, i.e., there exists $x \in X$ such that $\left\|T^{n} x\right\|$ does not converge to 0 . Then the Banach space E, defined in Lemma 1, is nonzero, and we can speak about the limit isometry V. Assume that V is invertible (which holds, e.g., if T has a dense range or $\sigma(T)$ does not contain the whole unit circle).

Lemma 3. Let T be polynomially bounded, nonstable, and let E and V be as in Lemma 1 such that V is an invertible isometry. Then there exists a family of measures $\mu_{z, z^{*}}$, where $z \in E, z^{*} \in E^{*}$, such that

$$
\begin{equation*}
\left\langle f(V) z, z^{*}\right\rangle=\int_{\sigma(V)} f(\lambda) d \mu_{z, z^{*}}(\lambda) \tag{2}
\end{equation*}
$$

for every function f in $C(\sigma(V))$.
Proof. Since T also is polynomially bounded, it follows easily that V also is polynomially bounded. In fact, we have

$$
\begin{aligned}
\hat{l}(p(\widehat{T}) \hat{x}) & =\lim _{n \rightarrow \infty}\left\|T^{n} p(T) x\right\| \leq\|p(T)\| \lim _{n \rightarrow \infty}\left\|T^{n} x\right\| \\
& =\|p(T)\| \hat{l}(\hat{x}) \leq M \sup _{|z| \leq 1}|p(z)| \hat{l}(\hat{x}),
\end{aligned}
$$

which implies $\|p(\widehat{T})\| \leq M \sup _{|z| \leq 1}|p(z)|$, hence $\|p(V)\| \leq M \sup _{|z| \leq 1}|p(z)|$, i.e., V is polynomially bounded. Lemma 2 implies that $\mathcal{A}(V)$ is isomorphic to $C(\sigma(V))$. Therefore, for each $z \in E, z^{*} \in E^{*}$, the mapping $f \mapsto\left\langle f(V) z, z^{*}\right\rangle$ is a continuous linear functional on $C(\sigma(V))$. Hence, by Riesz's theorem, for every $z \in E, z \in E^{*}$, there exists a measure $\mu_{z, z^{*}}$ on $\sigma(V)$ such that (2) holds.

Note that, in general, V does not have a spectral measure, i.e., it is not a spectral operator in the sense of N. Dunford [4]. But formula (2), which resembles the functional calculus for spectral operators of scalar type and holds in our case only for continuous functions f on the spectrum of V, will be one of the main ingredients in the proof of Lemma 5 below.

Lemma 4. Suppose that T is a polynomially bounded operator on a Banach space X. Then for every function $f \in A(D)$ one can define a bounded linear operator $f(T)$ on X such that:

1) If $f=1$, then $f(T)=I$;
2) If $f(\lambda)=\lambda$, then $f(T)=T$;
3) The mapping $f \mapsto f(T)$ is an algebra homomorphism from $A(D)$ into $L(X)$ satisfying $\|f(T)\| \leq M\|f\|_{\infty}$.

The proof of Lemma 4 is straightforward. In fact, we first define $f(T)$ for polynomials f in the standard way. Then, using von Neumann's inequality, we can extend this definition to the functions of the class $A(D)$ using approximations.

In the sequel, an invertible operator S on X is called doubly power bounded provided that both S and S^{-1} are power bounded, i.e., if $\sup _{n \in \mathbf{Z}}\left\|S^{n}\right\|<\infty$. It is easy to see that if S is doubly power bounded, then S is an (invertible) isometry in the equivalent norm $\|\|x\|\|=\sup _{n \in \mathbf{Z}}\left\|S^{n} x\right\|, x \in X$.

Lemma 5. Assume that:

1) T is polynomially bounded operator on a Banach space X.
2) There does not exist an invariant subspace K with respect to T^{*} such that $T^{*} \mid K$ is invertible and doubly power bounded.

Then the measures $\mu_{z, z^{*}}$ are absolutely continuous with respect to the Lebesgue measure.

Proof. Assuming the contrary, i.e., there exist $z \in E, z^{*} \in E^{*}$ such that $\mu_{z, z^{*}}$ is not absolutely continuous with respect to the Lebesgue measure m. This implies that there exists a compact set K with $m(K)=0$ and $\mu_{z, z^{*}}(K) \neq 0$.

By Fatou's theorem (see e.g. [6, p. 80]), there exists a function $h \in A(D)$ such that

$$
\begin{equation*}
h(\lambda)=1, \text { if } \lambda \in K \text { and }|h(\lambda)|<1 \text { if } \lambda \in \bar{D} \backslash K<1 \tag{3}
\end{equation*}
$$

Let $\tilde{h}(\lambda):=\overline{h(\bar{\lambda})}$. Then $\tilde{h} \in A(D),\|\tilde{h}\|=1$. Since V^{*} also is a polynomially bounded invertible isometry, $\tilde{h}^{n}\left(V^{*}\right)$ is defined and satisfies

$$
\begin{equation*}
\sup _{n \geq 0}\left\|\tilde{h}^{n}\left(V^{*}\right)\right\| \leq M<\infty \tag{4}
\end{equation*}
$$

Fix a nonzero functional z^{*} in E^{*}. By (4) and the weak* compactness of the unit ball in E^{*}, there exists a subsequence n_{k} such that $\tilde{h}^{n_{k}}\left(V^{*}\right) z^{*} \rightarrow z_{0}^{*}$ in the $\left(E^{*}, E\right)$ topology. Define two functionals x^{*} and x_{0}^{*} in E^{*} by

$$
\begin{equation*}
x^{*}(x)=z^{*}(\hat{x}), \quad x_{0}^{*}(x)=z_{0}^{*}(\hat{x}), x \in X \tag{5}
\end{equation*}
$$

Then, for every vector x in X, (5) implies that

$$
\begin{gathered}
\left(\tilde{h}^{n_{k}}\left(T^{*}\right) x^{*}\right)(x)=x^{*}\left(h^{n_{k}}(T) x\right)=z^{*}\left(\left(\widehat{h^{n_{k}}(T)} x\right)\right) \\
=z^{*}\left(h^{n_{k}}(V) \hat{x}\right)=\left(\tilde{h}^{n_{k}}\left(V^{*}\right) z^{*}\right)(\hat{x})
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\lim _{k \rightarrow \infty}\left(h^{n_{k}}\left(T^{*}\right) x^{*}\right)(x)=\lim _{k \rightarrow \infty}\left(\tilde{h}^{n_{k}}\left(V^{*}\right) z^{*}\right)(\hat{x}) \\
=z_{0}^{*}(\hat{x})=x_{0}^{*}(x)
\end{gathered}
$$

i.e., $\tilde{h}^{n_{k}}\left(T^{*}\right) x^{*}$ converges to x_{0}^{*} in the $\left(X, X^{*}\right)$-topology. Now we have, by adopting (4)-(6) and the Dominated Convergence Theorem,

$$
\begin{array}{r}
x_{0}^{*}(y)=\lim _{k \rightarrow \infty}\left(\tilde{h}^{n_{k}}\left(T^{*}\right) x^{*}\right)(y) \\
=\lim _{k \rightarrow \infty} x_{0}^{*}\left(h^{n_{k}}(T) y\right)=\lim _{k \rightarrow \infty} z^{*}\left(h^{n_{k}}(V) \hat{y}\right) \\
=\lim _{k \rightarrow \infty} \int_{-\pi}^{\pi} h^{n_{k}}\left(e^{i \lambda}\right) d \mu_{\hat{y}, z^{*}}(\lambda)=\mu_{\hat{y}, z^{*}}(K) .
\end{array}
$$

Since $\mu_{z, z^{*}}(K) \neq 0$, and \widehat{X} is dense in E, there exists \hat{y} such that $\mu_{\hat{y}, z^{*}}(K) \neq 0$, so that $x_{0}^{*} \neq 0$.

By Rudin-Carleson's theorem (see e.g. [6, p. 80]), there exists a function $\phi \in A(D)$ such that

$$
\begin{equation*}
\phi\left(e^{i \lambda}\right)=e^{-i \lambda} \text { for } \lambda \in K \text { and }\|\phi\|_{\infty}=1 \tag{6}
\end{equation*}
$$

We show that

$$
\begin{equation*}
T^{*} \phi\left(T^{*}\right) x_{0}^{*}=x_{0}^{*} \tag{7}
\end{equation*}
$$

Indeed, we have, in view of (4)-(6),

$$
\begin{gathered}
\left(\left[I-T^{*} \phi\left(T^{*}\right)\right] x_{0}^{*}\right)(y)=x_{0}^{*}([I-T \phi(T)] y) \\
\left.=z_{0}^{*}([I-V \phi(V)] \hat{y})=\lim _{k \rightarrow \infty} \tilde{[} h^{n_{k}}\left(V^{*}\right) z^{*}\right]([I-V \phi(V)] \hat{y}) \\
=\lim _{k \rightarrow \infty} z^{*}\left(h^{n_{k}}(V)[I-V \phi(V)] \hat{y}\right) \\
=\lim _{k \rightarrow \infty} \int^{\pi} h^{n_{k}}\left(e^{i \lambda}\right)\left(1-e^{i \lambda} \phi\left(e^{i \lambda}\right)\right) d \mu_{\hat{y}, z^{*}}(\lambda) \\
=\int_{K}\left(1-e^{i \lambda} \phi\left(e^{i \lambda}\right)\right) d \mu_{\hat{y}, z^{*}}(\lambda)=0, \quad \text { for all } y \in X,
\end{gathered}
$$

which implies that (7) holds.
Now let $W:=\phi\left(T^{*}\right)$. Then (6) and (7) imply that $\sup _{n>0}\left\|W^{n}\right\| \leq M$, and $\left(W T^{*}\right)^{n}\left(T^{*}\right)^{k} x_{0}^{*}=\left(T^{*}\right)^{k} x_{0}^{*}, k=0,1,2, \ldots$ Let $K:=\overline{\operatorname{span}}\left\{\left(T^{*}\right)^{k} x_{0}^{*}: k \geq 0\right\}$. Then K is invariant subspace for $T^{*}, T^{*} \mid K$ is invertible (with the inverse equal W) and $\sup _{n \in \mathbf{Z}}\left\|\left(T^{*} \mid K\right)^{n}\right\| \leq M$, which is a contradiction.

Remark. Lemma 5 has been proved in [10, Prop. 2.1], for contractions on Hilbert space, and here we generalized this proof.

From Lemma 5 we obtain the following result which is a generalization of the Nagy-Foias theorem.

Theorem 1. Let T be a polynomially bounded operator on a Banach space X such that $\sigma(T) \cap \Gamma$ has measure 0 . Then the following are equivalent:
(i) $T^{n} x \rightarrow 0$ for every $x \in X$;
(ii) T^{*} does not have an invariant subspace $K \neq\{0\}$ on which $T^{*} \mid K$ is invertible and doubly power bounded.

Proof. Since $\sigma(T) \cap \Gamma$ has measure zero, it follows that $\sigma(V) \cap \Gamma$ also has measure zero, hence V is an invertible isometry.

Suppose that (ii) holds, we show that (i) holds. Assuming the contrary, we have $E \neq\{0\}$. By Lemma 5 , the measures $m_{z, z^{*}}, z \in E, z^{*} \in E^{*}$, are absolutely continuous with respect to the Lebesgue measure. From $m(\sigma(V))=0$ it follows that $m_{z, z^{*}}(\sigma(V))=0$, i.e., all the measures $m_{z, z^{*}}$ are zero, which is an absurd.

Now suppose that (i) holds but (ii) does not hold. Thus, there is a nonzero subspace K of X^{*} which is invariant under T^{*} and such that $T^{*} \mid K$ is invertible and $\sup _{n \in \mathbf{Z}}\left\|\left(T^{*} \mid K\right)^{n}\right\|<\infty$. Let $S=T^{*} \mid K$. Fix an element x^{*} in $K, x^{*} \neq 0$. Then $\left\{S^{-n} x^{*}: n \geq 0\right\}$ are uniformly bounded, hence $x^{*}(x)=\left(S^{n}\left(S^{-n}\right) x^{*}\right)(x)=$ $\left[\left(T^{*}\right)^{n} S^{-n} x^{*}\right](x)=\left[S^{-n} x^{*}\right]\left(T^{n} x\right) \rightarrow 0$, for all $x \in X$, which is a contradiction.

Note that Theorem 1 can be regarded as an analogue of the stability results in $[1,7,10]$ (see also [11-13]) where the condition that $m(\sigma(T) \cap \Gamma)=0$ is replaced
by countability of $\sigma(T) \cap \Gamma$, and condition
T^{*} does not have an invariant subspace $K \neq\{0\}$
such that $T^{*} \mid K$ is invertible and doubly power bounded
is replaced by
T^{*} does not have eigenvalues on the unit circle.

References

[1] W. Arendt and C.J.K. Batty, Tauberian Theorems and Stability of One-Parameter Semigroups. - Trans. Amer. Math. Soc. 306 (1988), 837-852.
[2] C.J.K. Batty and Q.Ph. Vu, Stability of Strongly Continuous Representations of Abelian Semigroups. - Math. Z. 209 (1992), No. 1, 75-88.
[3] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces. NorthHolland, Amsterdam, 1988.
[4] N. Dunford and J.T. Schwartz, Linear Operators. III. Spectral Operators. Wiley, New York, 1971.
[5] K. Hoffman, Banach Spaces of Analytic Functions. Dover Publ. Inc., New York, 1988.
[6] L. Kérchy and J. van Neerven, Jan Polynomially Bounded Operators whose Spectrum on the Unit Circle Has Measure Zero. - Acta Sci. Math. (Szeged) 63 (1997), No. 3-4, 551-562.
[7] Yu. Lyubich and Q.Ph. Vu, Asymptotic Stability of Linear Differential Equations in Banach Spaces. - Stud. Math. 88 (1988), No. 1, 37-42.
[8] Sz. Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space. Akadmiai Kiad, Budapest, 1970.
[9] G. Pisier, A Polynomialy Bounded Operator on Hilbert Space which is not Similar to a Contraction. - J. Amer. Math. Soc. 10 (1997), 351-359.
[10] G.M. Sklyar and V.Ya. Shirman, Asymptotic Stability of a Linear Differential Equation in a Banach Space. - Teor. Funkts., Funkts. Anal. i Prilozhen. 37 (1982), 127-132. (Russian)
[11] Q.Ph. Vu and Yu. Lyubich, A Spectral Criterion for Asymptotic Almost Periodicity for Uniformly Continuous Representations of Abelian Semigroups. - Teor. Funkts., Funkts. Anal. i Prilozhen. 50 (1988), 38-43. (Russian) (Transl.: J. Soviet Math. 49 (1990), No. 6, 1263-1266.)
[12] Q.Ph. Vu, Almost Periodic and Strongly Stable Semigroups of Operators. - Linear operators (Warsaw), (1994), 401-426; Banach Center Publ. 38. Polish Acad. Sci., Warsaw, 1997.
[13] Q.Ph. Vu, Theorems of Katznelson-Tzafriri Type for Semigroups of Operators. J. Funct. Anal. 103 (1992), No. 1, 74-84.

