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Dedicated to the centennial of the birthday of B.Ya. Levin

1. Introduction: Initial Results

Denote by D(z; t) an open disk of the radius r centered at z 2 C in the

complex plane C , D(r) := D(0; r). For t 6 0, D(z; t) is an empty set ? by

de�nition. For S � C , we denote its boundary in C by @S. In particular, @D(z; t)
is a circumference of the radius r centered at z.

By M+ denote the class of all positive Borel measures � on C , supp� is

a support of � 2 M+; �(z; t) := �
�
D(z; t)

�
, �rad(r) := �(0; r) = �

�
D(r)

�
. By

�
��
B
denote restriction of the measure � to the Borel subset B � C .

Let � = f�kg, k = 1; 2; : : : , be a sequence of points in the complex plane

without accumulating points in C . With � we associate an integer-valued measure

n� on C by the rule

n�(D) :=
X
�k2D

1; D � C ; (1.1)

i. e., n�(D) is the number of points from � occurring in D. In this connection we

set supp� := suppn�. By de�nition, the inclusion � � D means that supp� �
D; z 2 � (z =2 � resp.) signi�es z 2 supp� (z =2 supp� resp.);

nrad� (r) = n�
�
D(r)

�
=
X
j�kj<r

1; r > 0;

is a counting function of sequence �, i. e., nrad� (r) is the number of all points of

this sequence from the disk D(r).
Our treatment of the sequence di�ers from that commonly used one conside-

ring the sequence to be a function of natural or integer argument. Two sequences

� � C and � = fk0g � C are equal (we write � = �) if we have the equality

n� = n� for the measures n� and n� from (1.1). In other words, we consider each

sequence of points as a representative of the equivalence class which consists of

the sequences with equal associate integer-valued measures (1.1). A sequence �
includes a sequence � � C if n� 6 n�. In this case we write � � �, and � is

a subsequence of the sequence �. The union � [ � (the intersection � \ � resp.)

is de�ned by the equality n�[� = n� + n� (n�\� = minfn�; n�g resp.). Given

� � �, the di�erence �n� is de�ned by the measure n�n� = n��n�. A sequence

� consists of single points if n�
�
fzg
�
6 1 for all z 2 C .

If a numeration of the points of sequence � is important in principle, then we

represent it as � = (�k), i. e., within round brackets.

For a nonzero entire function f , by Zerof denote the sequence of zeros of this

function counting multiplicities, i. e., nZerof
�
fzg
�
is equal to multiplicity of zero

of f for every point z 2 C .
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In Levin's fundamental monograph the results about estimations of change

of growth of entire function under shifts of its zeros [1, Ch. II, Lemmas 1, 4]

played an important role in creating the theory of the functions of �nite order �

of completely regular growth.

We represent here only a more simple case of the noninteger order � in the form

convenient for parallels with the subsequent results (in the original the formulation

is given for the proximate order �(�)).
Further images of the point z 2 C and the set D � C under mapping (trans-

formation) T : C ! C are frequently written as Tz and TD.

Theorem L ([1, Ch. II, Lemma 1]). Let f be an entire function with zero

sequence Zerof = f�kg, k = 1; 2; : : : , having �nite density with respect to a non-

integer order � > 0, i. e., there exists the �nite limit

lim
r!+1

nradZerof
(r)

r�
: (1.2)

Then, for every " > 0 and � > 0, we can select the number d > 0 such that, for

each mapping T : Zerof ! C satisfying the conditions��T�k�� = j�kj;
��arg T�k � arg �k

�� 6 d; k = 1; 2; : : : ; (1.3)

there is an entire function fT with zero sequence

ZerofT = TZerof := fT�kg =: fkg; k = 1; 2; : : : ; (1.4)

for which the estimate ��log jfT (z)j � log jf(z)j
�� 6 "jzj�

holds for all z 2 C n E, where an exceptional set

E =

1[
j=1

D(zj ; tj) (1.5)

has the upper density 6 �, i. e., lim sup
r!+1

1

r

P
jzj j<r

tj 6 �.

A.A. Gol'dberg showed in [2, � 6, Lemma] that this result holds if Zerof is
only a sequence �nite upper density with respect to order � (or proximate order

�(�)), i. e., we can substitute the superior limit for the limit in (1.2).

Further more general quantitative results were obtained by I.F. Krasichkov-

Ternovski�� [3] who applied them to the problem of spectral synthesis and the
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problems of completeness of exponential systems [4]. In paper [3] it was supposed,

that zeros of entire function moved in arbitrary directions:���1� k

�k

��� < d 6
1

2
for all su�ciently large k where T�k = k: (1.6)

Then denote various positive constants by const+.

Theorem K-T ([3]). Under the condition (1.6), for each entire function f

with Zerof = f�kg of �nite upper density with respect to a noninteger order � > 0,
there exists an entire function/ fT with ZerofT = TZerof = fkg such that for

any �; � 2 (0; 1) and for a const+ independent of �, � 2 (0; 1), the estimate

��log jfT zj � log jf(z)j
�� 6 const+

d1��

�� sin��
jzj� (1.7)

holds for all z 2 C n E, where the exceptional set E from (1.5) has the upper

density 6 �d�
2

.

It is easy to see that condition (1.3) follows from (1.6) under the restriction��T�k�� = j�kj with constant 1;033d in place of d. Therefore Th. K-T implies

Levin's theorem L by a non-complicated choice of constants �, �, d. A certain

development of Th. K-T was obtained later in [5, Th. A].

In [6] V.S. Azarin gave a general subharmonic interpretation for the conception

of shifts of zeros of entire function and obtained the result which was used for

asymptotic approximation of subharmonic functions by the logarithm of modulus

of entire function, for construction of entire function of completely regular growth

on arbitrary closed system of rays, and also, as in [4, Cor. 4.3], for a decomposition

of entire function into product of entire functions of the prescribed growth at the

in�nity [7]. One more Azarin's result [8, � 5, Variational theorem] concerning

the subjects studied in the paper is formulated in terms of convergence in the

distribution space or, rather, in the language of the theory of limiting sets in the

sense of V. S. Azarin.

A.F. Grishin [9] used the precise methods in studying asymptotic behavior of

the di�erence of subharmonic functions under shift of argument, i. e., the asymp-

totic of ju(z + hz)� u(z)j under z !1 depending on h. The results can also be

interpreted as an in�uence on change of subharmonic function of special variation

of its Riesz measure generated by transformation of the complex plane of the

form T : z 7! z + hz, z 2 C , for the �xed h (see the approach in [10], and with

generalizations in [11], [12]). The edited version of A.F. Grishin's technique from

his recent paper written together with T.I. Malyutina [13, Th. 6 etc.], might be

helpful in a number of cases for studying the change of behavior of subharmonic
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(entire resp.) function under a su�ciently arbitrary variation of its Riesz measure

(distribution of zeros resp.).

We do not concern here numerous works in which interrelations are between

shifts of zeros of entire functions and changes of behavior of these functions for

the cases when very special shifts of zero or classes are examined as well as the

works on the problems of approximation of subharmonic functions, stability of

completeness, minimality, basis properties, etc. for the systems of functions in

functional spaces. In part these works are marked in [14, 15].

2. Subharmonic Interpretation According to V.S. Azarin

Let us consider in details subharmonic interpretation of shift of zeros of entire

function given by V.S. Azarin. Everywhere below in Sect. 2, for the mapping

T : C ! C we assume the following two conditions:

� this mapping T is Borel measurable;

� the preimage T�1B of every bounded subset B � bC is also bounded in C .

For � 2 M+(C ) its T -shift �T 2 M+(C ) or, in other words, the image T� of �

under T (see [16, Ch. IV, � 6]) is de�ned by the rule

�T (B) := �
�
T�1B

�
; B � C is a Borel subset. (2.1)

Thus we have the equalityZ
B

f d�T =

Z
T�1B

f(Tz) d�(z) (2.2)

for every Borel function f on the Borel subset B � C .

Without loss of generality, we everywhere assume that supports of the measures

do not contain 0.
Following L. Schwarz [16, Ch. I, � 4], everywhere we understand the positivity

of number, function, measure, etc. as > 0, and > 0 is a strict positivity ; we accept

similar agreements also for the negativity and strict negativity.

If, for a mapping (a function) f on the set X we have f(x) � a for all x 2 X,

then we write �f � a on X�, and if it is not so, then �f 6� a on X�. A function

f on a subset X of the real axis R is called increasing (strictly increasing resp.)

if the inequality x1 < x2 for x1; x2 2 X implies f(x1) 6 f(x2) ( f(x1) < f(x2)
resp.). Similarly, we distinguish decrease and strict decrease.
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Theorem A ([6, Main Lemma]). Let d : [0;+1) ! (0;+1) be a decreasing

function satisfying lim sup
t!+1

d(t)

d(2t)
< +1, and, for T : C ! C ,

���1� Tz

z

��� 6 d(jzj) for all z 2 C : (2.3)

If � 2 M+ is a measure of �nite type with respect to a noninteger order � > 0,
i. e.,

lim sup
r!+1

�rad(r)

r�
< +1;

and, by de�nition, p := [�] is an integer part of �, then for each subharmonic

function u with the Riesz measure � there exists a subharmonic function uT with

the Riesz measure �T such that for any number � 2 (0; 1=
p
2), the estimate��uT (z)� u(z)

��
6 const+

jzj�
�2

0
@ 1Z

0

d(jzjt) dt
t1+p��

+

+1Z
1

d(jzjt) dt
t2+p��

1
A (2.4I)

+ const+jzj�� log 1

�
(2.4r)

holds for all z 2 C nE, where the exceptional set E from (1.5) has the upper density

6 const+ � �. Here all three arising constants const+ do not depend on �; d.

In particular, it follows from Th. A that for an entire function f with sequence

of simple * zeros Zerof = f�kg of �nite upper density with respect to an order

� > 0, under condition (2.3), there is an entire function fT with zero sequence

(1.4), for which the estimate (2.4) with u := log jf j and uT := log jfT j holds
outside the exceptional set (1.5) of the upper density 6 const+ � �.

Under the conditions of Th. K-T for d(t) � d(0) =: d 2 (0; 1=2], the estimate

(2.4) allows to replace the right-hand side of the estimate (1.7) by a somewhat

more convenient quantity const+
�
d

�2
+ � log

1

�

�
jzj� performing this estimate

outside some exceptional set (1.5) of the upper density 6 const+�. Moreover,

if we choose � = 3
p
d and again replace

3
p
d by d, it is possible to get rid of the

parameters �; � without loss of pithiness: for any number d 2 (0; 1) the left-hand
side of (1.7) in Th. K-T can be estimated from above by const+djzj� log(1=d) out-
side the exceptional set of a kind of (1.5) of the upper density 6 const+d where

the constant const+ does not depend on d.

*It is easy to get rid of the restrictions on multiplicity of zeros by the general scheme from

Sect. 3.
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The kind of the last summand in the right part of the estimate (2.4) shows that

the order of the estimation juT �uj by Th. A cannot be less than jzj�, even if func-

tion d from (2.3) decreases very quickly. It means that the conclusion of Azarin's

theorem A "feels" the degree of closeness of measures � and �T insu�ciently. The

incompleteness mentioned above is compensated in B.N. Khabibullin's paper [17].

Moreover, the estimations set up in this paper are in a certain degree the best

possible ones on terms of behavior of function jTz � zj and cover a multivariate

case as well. To formulate one of the versions of these results for the complex

plane we will need additional designations. We put

Æ(z) :=
��Tz � z

��; z 2 C ; ÆT (z) :=

8<
:

sup
T�=z

jz � �j; z 2 T C ;

ÆT (z) := 0; z =2 T C :
(2.5)

For a measure � 2 M+ with supp� \ f0g = ?, we de�ne the characteristic (cf.

(??I))

Kq(r; d�) : = rq
r�0Z
0

d�rad(t)

tq
+ r1+q

+1Z
r�0

d�rad(t)

t1+q
(2.6d)

= qrq
rZ

0

�rad(t)
dt

t1+q
+ (q + 1)rq+1

+1Z
r

�rad(t)
dt

t2+q
(2.6p)

= q

1Z
0

�rad(rt)
dt

t1+q
+ (q + 1)

+1Z
1

�rad(rt)
dt

t2+q
; r > 0; (2.6c)

where q should be a positive integer, not smaller than a genus of the measure �.

Let us remind, that the genus of the measure � is the least integer q > 0 for which
the second integral in (??d) or in (??p), (??c) is �nite.

Denote by [�1;+1] an extended real axis equipped by natural order relation.

In particular, �1 6 x 6 +1, x 2 [�1;+1]. Given a number " > 0, a function

f : C ! [�1;+1], and a subset B � C , de�ne

f (")(z) := sup
�
f(�) : � 2 D(z; "jzj)

	
; z 2 C ; B" :=

[
z2B

D
�
z; "jzj

�
: (2.7)

For 0 < " < 1, the ratios

�
f (")

�(")
(z) 6 f (3")(z); z 2 C ;

�
B"
�" � B3" (2.8)

are valid.
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Theorem Kh1 ([17, Theorem 2]). Let u be a subharmonic function with the

Riesz measure �, 0 =2 supp �, and the measure � 2M+ is de�ned by the equality

d� := Æ d� + ÆT d�T (2.9)

in designations from (2.5). Let q > 0 be an integer such that q� 6 q where q� is

a genus of the measure �. Then there exists a subharmonic function uT with the

Riesz measure �T such that, for any Borel function N : C ! (1;+1) and for any

" 2 (0; 1), the estimate

��u(z)� uT (z)
�� 6 const+N (")(z)

Kq

�
jzj; d�

�
"2jzj

� log

 
2 +

"jzj
Kq

�
jzj; d�

� ��(z; "jzj) + �T (z; "jzj)
�!

; (2.10)

with a constant const+ depending only on q, is ful�lled everywhere outside the

exceptional set of a kind of (1.5) satisfying the inequalities

X
zj2B

tj 6

Z
B"

dm(z)

N(z)jzj ; tj 6
"

3
jzj j for all j = 1; 2; : : : , (2.11)

and for every Borel subset B of C where m is a Lebesgue measure on C .

If the function N depends only on jzj and its restriction on [0;+1) is in-

creasing, then, by de�nitions and properties (2.7)�(2.8), it is easy to see that

N (")(z) � N
�
(1 + ")jzj

�
, z 2 C . In that case, in view of the restrictions*

tj 6
"

3
jzj j, j = 1; 2; : : : , the estimate of sum from (2.11) could be replaced

by a more convenient and useful estimate

X
D(zj ;tj)

T�
D(R)nD(r)

�
6=?

tj 6 2�

(1+3")RZ
maxf(1�3")r;0g

dt

N(t)
: (2.12)

Let us apply Th. Kh1 to some development of Th. A.

Note, that Azarin's theorem A is substantial only for small decreasing func-

tion d. Therefore, without loss of generality, the restriction d(0) 6 1=2 can be

added to its conditions. Hence the condition (2.3) in notations (2.5) implies

*There are no such restrictions in the original formulation [17, Th. 2], but they are obviously

present in the proof (see also dissertation [14] or its abstract [15]).
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Æ(z) 6 d(jzj)jzj and, as a consequence, ÆT (z) 6 const+d(jzj)jzj. The representa-

tion and inequality (see de�nition (2.9) of the measure � from Th. Kh1)

�rad(t) =

tZ
0

Æ(s) d�rad(s) +

tZ
0

ÆT (s) d�
rad
T (s) 6 const+t�+1; (2.13)

show that its genus q� is not larger than q = p + 1 = [�] + 1. Hence, for the

characteristic (2.6) in version (??d), a series of somewhat tiring integrations by

parts and the change of variable allow to obtain the estimate

Kq(r; d�)

r
6 const+r�

0
@ 1Z

0

d(rt) dt

t1+p��
+

+1Z
1

d(rt) dt

t2+p��

1
A

6 const+r�

0
@ 1Z

0

d(rt) dt

t1+p��
+

1

1 + p� �
d(r)

1
A : (2.14)

The function x log(2 + a=x) is increasing on [0;+1) when a > 0. Thus, if we

choose " = 1=3 and put N(t) � 4�=�, t > 0, then, by Th. Kh1, the estimates

(2.10)�(2.12) together with (2.14) entail the following:

��u(z) � uT (z)
�� 6 const+

jzj�
�

0
@ 1Z

0

d(jzjt) dt
t1+p��

+
1

1 + p� �
d(jzj)

1
A

� log

0
BBB@2 + const+

�(z; jzj=3) + �T (z; jzj=3)

jzj�
�

1R
0

d(jzjt) dt

t1+p�� + 1
1+p��

d(jzj)
�
1
CCCA :

Some weakening of the last estimation gives

Corollary Kh1. Under the conditions of Th. A the estimate (2.4) can be

replaced by

��uT (z)� u(z)
�� 6 const+

jzj�
�

0
@ 1Z

0

d(jzjt) dt
t1+p��

+ d(jzj)

1
A log

�
2 +

1

d(jzj)

�
(2.15)

outside the exceptional set (1.5) of the upper density 6 �.

The estimate (2.15) is frequently more re�ned than (2.4) from Th. A. For

example, if d(t) � (1 + t)��, t > 0, where 0 < � < � � [�], then the right-hand
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side of (2.15) can be easily estimated from above by the quantity O
�
jzj��� log jzj

�
,

z ! 1, whose order of growth at in�nity is strictly less than for jzj� (compare

with the comment directly ahead of (2.5)).

Using of the genus q� of measure � in Th. Kh1 (below q� 6 [��]+ 1) allows
to give considerably more general and improved version of Cor. Kh1.

Corollary Kh2 ([14, Cor. 3.1]). Let u be a subharmonic function of �nite

type with respect to the order � > 0 with the Riesz measure �. If, for a number

 2 [0; � + 1] and a function ' : [0;1) ! [0; 1=2] [a;+1) that is decreasing on

a ray [a;+1) where a > 0, and ' � 0 on [0; a), the mapping T : C ! C satis�es

���1� Tz

z

��� 6 '(jzj)jzj1� ; z 6= 0; (2.16)

then there exists a subharmonic function uT of the order 6 � with the Riesz

measure �T such that for any increasing function N > 2 on [0;+1) the following
estimate

��uT (z)� u(z)
�� 6 const+ jzj��

0
@ 1Z

0

'(jzjt) dt
t1+[��]�(��)

+'
�
jzj=2

�
N
�
2jzj
�
log
�
2 +

jzj
'
�
jzj=2

��
!

(2.17)

is ful�lled outside the exceptional set of a kind of (1.5) satisfying

X
D(zj ;tj)

T�
D(R)nD(r)

�
6=?

tj 6

2RZ
r=2

dt

N(t)
for all su�ciently large r < R: (2.18)

Unfortunately, in Cor. Kh2 the function uT can have the in�nite type with

respect to the order �. Finiteness of the type of this function can be provided

due to any of the following three conditions (see [14, Remark 2, p. 57]): 1) � is

a noninteger number; 2)  > 0; 3)
+1R
1

'(t)
dt

t
< +1.

Here is one more addition to Azarin's Theorem A.

Corollary Kh3 ([14, Remark 1, p. 56]). Suppose that under conditions of

the previous Cor. Kh2 the function ' from (2.16) is increasing on [a;+1),

lim
t!+1

log'(t)

log t
= 0, and 0 <  6 � + 1. Then we can draw the conclusions
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similar to those in Consequence 2, with the same increasing function N > 2, but
with the estimate

��uT (z) � u(z)
�� 6 const+ jzj��

0
@ +1Z

1

'(jzjt) dt
t2+[��]�(��)

+'
�
2jzj
�
N
�
2jzj
�
log
�
2 +

jzj
'
�
2jzj
��
!

(2.19)

outside the exceptional set of a kind of (1.5) satisfying (2.18).

R e m a r k 1. The right-hand sides of the estimates (2.10) from Th. Kh1,

(2.17) from Cor. Kh2, and (2.19) from Cor. Kh3 demonstrate that these results

cannot give the order of closeness of the functions u and uT less than O(1=jzj)
as z ! 1. Generally speaking, it is impossible to lower this order of closeness

without additional conditions. For example, if u(z) � log jz � �j, z 2 C , and

T takes � to  6= �, then it is not di�cult to understand that the function

uT (z) � log jz � j is asymptotically most close to u. At the same time, for

jzj > 2maxfj�j; jjg we have the estimate

��uT (z)� u(z)
�� � ��log jz � j � log jz � �j

�� > 2j�� j
jzj :

R e m a r k 2. As well as in the comment following Th. A, all previous sub-

harmonic results can be considered as a statement on the change of growth of

entire function f under transformation of the sequence of its zeros Zerof = f�kg
in the sequence of zeros (1.4) of some entire function fT with the corresponding

reformulations for u := log jf j and uT := log jfT j. Thus, for example, conditions

(2.3) and (2.16) will be written as���1� k

�k

��� 6 d(j�kj);
���1� k

�k

��� 6 '(j�kj)j�kj1� ; k = 1; 2; : : : ; T�k := k:

As the subharmonic results were formulated for mappings T , application of these

results to the entire functions f is possible, generally speaking, only for the case

when the sequences Zerof have no multiple (repeating) points. Indeed, if �k = �k0

are two points of � = Zerof , k 6= k0, but k = T�k 6= k0 = T�k0 , then such trans-

formation of T is not mapping any more, whereas all the results of V. S. Azarin

and B.N. Khabibullin were proved just for mappings T . This di�culty can be

overcome in some ways. For example, one of them is to consider the multiple-

valued mappings T , i. e., to do all reasonings and calculations once again with

the probable complications at least of technical character. An alternative way is

o�ered in Sect. 3.

Journal of Mathematical Physics, Analysis, Geometry, 2007, v. 3, No. 1 71



E.G. Kudasheva and B.N. Khabibullin

3. Approximation by Entire Functions with Simple Zeros

First, we de�ne the joint result of V.V. Napalkov and M.I. Solomeshch [18]

which directly relates to our subject. The proof is in the dissertation by M.I. So-

lomeshch [19].

Let f be an entire function with Zerof = (�k), 0 =2 Zerof represented by the

Weierstrass canonical product

f(z) = R(z)

1Y
k=1

�
1� z

�k

�
exp pk(z=�k); z 2 C ; (3.1)

where R is an entire function without zeros, and pk, k = 1; 2; : : : , are polynomials.

As well as in [18], considered is a sequence of points d = (dk) � C such that

�k+dk 6= 0 for all k = 1; 2; : : : . Suppose that dk = dk0 in all cases when �k = �k0 .

By (3.1) let us construct a formal product

fd(z) = R(z)

1Y
k=1

�
1� z

�k + dk

�
exp pk(z=�k); z 2 C : (3.2)

Let a family of disks D(�k; tk), tk > 0, k = 1; 2; : : : , such that tk = tk0 if �k = �k0 .

Theorem N�S ([18, Prop. 1], [19, Props. 7�9]). In the assumed notations and

agreements, let jdkj < tk for all k = 1; 2; : : : , and

1X
k=1

jdkj
tk

< +1: (3.3)

Then product (3.2) converges if z =2 E =
S1

k=1D(�k; tk) and determines an ana-

lytic function outside E, and for const+ we have��log jfd(z)j � log jf(z)j
�� 6 const+; z 2 C n E:

If each connected component of E is bounded, then product (3.2) converges to the

entire function fd with Zerofd = (�k + dk), k = 1; 2; : : : .

If connected components of the set E from Napalkov�Solomeshch's Theo-

rem N�S are unbounded, then product (3.2), generally speaking, can diverge at

points z 2 E. Thus, a condition on the connected components of set E in the last

paragraph of Th. N�S is essential.

Taking into account properties of the sequences (dk) and (tk) in relation to

the sequence (�k), we de�ne an auxiliary notion.

We say that a sequence (ak), k = 1; 2; : : : , is linked with a sequence (bk),
k = 1; 2; : : : , if bk = bk0 implies ak = ak0 . In particular, according to the condition
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above the sequences (dk), (tk), and (�k + dk) are linked with the sequence (�k).
By virtue of the last, Theorem of Napalkov�Solomeshch cannot be used to solve

the main problem of Sect. 3 on the approximation of entire function by the entire

function with simple zeros. More speci�cally, we cannot "split" multiple zeros of

function f to simple zeros of function fd with the help of Th. N�S, because, by

the construction of sequence Zerofd = (�k + dk), the coincident points �k = �k0

are transformed to the same points �k + dk = �k0 + dk0 from Zerofd .
The main result of this paragraph was announced rather long ago in the paper

[20], but its proof is given here for the �rst time.

Theorem 1. Let f be an entire function with Zerof = (�k), k = 1; 2; : : : .
For every given decreasing function � : [0;+1)! (0;+1) and number " > 0 we

can �nd an entire function g with the sequence of simple zeros Zerog = (k) and
(tk) � (0;+1) that is linked with the sequence (�k) such that:

1) for �k 6= �k0, the disks D(�k; tk) and D(�k0 ; tk0) are not intersected; for

r > 0,
P

j�kj>r

tk 6 �(r); �nally, jk � �kj < tk for all k = 1; 2; : : : ;

2) the inequality ��log jg(z)j � log jf(z)j
�� 6 "

jzj2 (3.4)

takes place for all z 2 C nS1

k=1D(�k; tk).

P r o o f. First, we consider the case when

(!) multiplicity of zeros of the function f at any point is an even number .

In this case the sequence Zerof = f�kg =: � can be represented as the union

� = �0 [ �00, where the sequences �0 = (�0k) and �00 = (�00k), k = 1; 2; : : : , such
that �0k = �00k for each k = 1; 2; : : : .

Now we choose a sequence of strictly positive numbers (tk) linked with (�0k)
such that the disks D(�0k; tk) are mutually disjoint and for all r > 0,

P
j�0
k
j>r tk 6

�(r), i. e., 1) is ful�lled. One can always do it as the imposed conditions are not

mutually exclusive in the sense that both restrictions take only a su�cient rapid

decrease of the sequence (tk). Given " > 0, we select strictly positive numbers

dk 6 tk=2 so small that (cf. (3.3))

1X
k=1

dkj�0kj 6
"

26
;

X
j�0kj>r

dk

t2k
j�0kj 6

"

26r2
for all r > 0: (3.5)
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To each pair of the coincident points �0k = �k" we assign two diametrically opposite

points 0k and 00k on the circumference @D(�0k; dk), i. e.,

0k + 00k = 2�0k = 2�00k = �0k + �00k; j0k � �0kj = j00k � �00kj = dk: (3.6)

Since every point of C coincides only with the �nite number of points �0k, it follows

that we can construct the distinct diametrically opposite points (0k; 
00
k ) so that

j0kj 6 j�0kj and

(�) the union �0 := �0 [ �00 of the sequences �0 = (0k) and �00 = (00k ) consists
of simple points and at the same time, by construction, � \ �0 = ?.

Now we estimate the sum of di�erences

�(z) :=
X
k

�
log
��(z � 0k)(z � 00k)

��� log
��(z � �0k)(z � �00k)

��� for z =2
[
k

D(�0k; tk):

(3.7)

Using (3.6), the identity

Lk(z) := log
��(z � 0k)(z � 00k )

��� log
��(z � �0k)(z � �00k)

�� = log
���1� �0k�

00
k � 0k

00
k

(z � �0k)
2

���
implies an upper bound

Lk(z) 6 log
�
1 +

j�0k�00k � 0k
00
k j

jz � �0kj2
�
6
j�00kjj�0k � 0kj+ j0kjj�00k � 00k j

jz � �0kj2
6

2dkj�0kj
jz � �0kj2

:

(3.8)

Similarly, it follows from

�Lk(z) = log
���1 + �0k�

00
k � 0k

00
k

(z � 0k)(z � 00k)

��� 6 log
�
1 +

j�0k�00k � 0k
00
k j

jz � 0kjjz � 00k j
�

that, in view of (3.6), and for jz � �0kj > dk,

�Lk(z) 6
2dkj�0kj�

jz � �0kj � j�0k � 0kj
��
jz � �00kj � j�00k � 00k j

� 6 2dkj�0kj�
jz � �0kj � dk

�2 :
But for jz � �0kj > tk > 2dk we have jz � �0kj � dk > jz � �0kj=2. Hence

�Lk(z) 6
23dkj�0kj
jz � �0kj2

for jz � �0kj > tk:

The last estimate together with (3.8), (3.7) gives

���(z)�� 6X
k

jLk(z)j 6
X
k

23dkj�0kj
jz � �0kj2

for z =2
[
k

D(�0k; tk) =: E:

74 Journal of Mathematical Physics, Analysis, Geometry, 2007, v. 3, No. 1



Variation of Subharmonic Function under Transformation of its Riesz Measure

If we �x the point z =2 E, then

���(z)�� 6
0
@ X
j�0kj<jzj=2

+
X

j�0kj>jzj=2

1
A 23dkj�0kj
jz � �0kj2

6
X

jz��0
k
j>jzj=2

23dkj�0kj
jz � �0kj2

+
X

j�0
k
j>jzj=2

23dkj�0kj
t2k

:

Here, using (3.5), we can estimate the �rst sum in the right-hand side as

X
jz��0kj>jzj=2

23dkj�0kj
jz � �0kj2

6
X
k

25dkj�0kj
jzj2 6

"

2jzj2 ;

and the second sum as

X
j�0
k
j>jzj=2

23dkj�0kj
t2k

6
"

23
�
jzj=2

�2 6 "

2jzj2 :

Thus, the last three estimates imply���(z)�� 6 "

jzj2 for z =2 E =
[
k

D(�0k; tk): (3.9)

For the case (!), our construction is �nished.

Now, if the function f has zeros of odd multiplicity, then we represent the

Zerof in the form Zerof = �0 [�, where �0 = f�0kg is a sequence of simple points

and � is a sequence of points of even multiplicity , i. e., n�
�
fzg
�
is an even number

for each point z 2 C . In this case we choose � := �0 [ �0 = (k) =: Zerog, where
the sequence �0 is constructed by the sequence � similarly to that one above. In

view of (�), the sequence � consists only of simple points whereas the exceptional

set E =
S
kD(�0k; tk) is identical to �. Besides, considering (3.9), for appropriate

renumbering and denotation (if necessary) of the points in Zerof = �0[� := (�k),
� := (k), and (tk), we get���(z; �;�)�� := ���X

k

�
log jz � kj � log jz � �kj

���� 6 "

jzj2 (3.10)

for z =2 SkD(�k; tk) = E where tk = 0 if the point �k is simple, i.e., n�
�
f�kg

�
= 1.

To conclude the proof, we use the Weierstrass representation (3.1) of f and

de�ne a function g in the form of product (cf. (3.2))

g(z) = R(z)

1Y
k=1

k � z

�k
exp pk(z=�k); z 2 C ; (3.11)
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for which, according to (3.10),

��log jg(z)j � log jf(z)j
�� � ���(z; �;�)�� 6 "

jzj2 for z =2 E:

Hence, using maximum-modulus principle for increasing sequence of bounded

domains with the boundaries disjointed from E, we see that the product (3.11) is

uniformly bounded on compacta. Therefore, by the Montel theorem the product

(3.11) determines a desired entire function g with simple zeros satisfying (3.4)

outside E.

This completes the proof of Th. 1.

R e m a r k 1. The polynomial f : z 7! z2 shows that the estimate (3.4)

is unimprovable. Indeed, for any pair of di�erent points f1; 2g there exists

a constant const+ > 0 such that���log��(z � 1)(z � 2)
��� log jz2j

��� > const+

jzj2 for all jzj > 2max
�
j1j; j2j

	
:

R e m a r k 2. Theorem 1 completely solves the problem set in Remark 2 from

Sect. 2 and even more, since under Remark 1 from Sect. 2 the highest possible

closeness of functions has the order O(1=jzj).

To conclude Sect. 3 we note without the proof the result similar to Th. N�S.

It is obtained analogously to Th. 1.

Theorem 2. Let f be an entire function with Zerof = (�k) =: �, k = 1; 2; : : : ,
and a sequence of strictly positive numbers (tk) is linked with �. Suppose that all
connected components of E :=

S
kD(�k; tk) are bounded. If, for a sequence (dk),

0 6 dk < tk, k = 1; 2; : : : (cf. (3.3))

1X
k=1

dk < +1;
X
j�kj>r

dk

tk
= O(1=r); r ! +1; (3.12)

then, for any sequence of points (k) � C satisfying the inequalities j�k�kj 6 dk,

k = 1; 2; : : : , there exists an entire function g with Zerog = (k) and a constant

const+ such that

��log jg(z)j � log jf(z)j
�� 6 const+

jzj for all z 2 C n E:

Evidently, if the sequence (tk) is bounded, then the convergence of the �rst sum

from (3.12) follows from the convergence of the second sum from (3.12).
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4. Integral Condition on T -shift. Main Result

As usual, denote by N := f1; 2; : : : g and Z the sets of all natural numbers

and all integers resp.; Z+ := f0g [ N. For q < s, by de�nition,
Qq

m=s � � � := 1,Pq
m=s � � � := 0.
Given q 2 Z+, the function

Eq(z; �) :=
�
1� z

�

� qY
m=1

exp
zm

m�m
; z 2 C ; � 2 C n f0g;

is called the Weierstrass primary factors of genus q 2 Z+.

The following special case of the classical Lindel�of theorem on an intercon-

nection between the growth of entire function and the distribution of its zeros [1,

Ch. I, � 11, Th. 15] relates to the sources of the main theorem of Sect. 4. This

result was announced in [21].

Proposition 1. If, for a sequence � = f�kg � C , k 2 N, the sum
P
k2N

1

j�kj�
is �nite for a number � > 0, then, for

q :=

(
[�] := integer part of � if � is noninteger;

�� 1 = [�]� 1 if � is integer;
(4.1)

the Weierstrass�Hadamard product W�(z) :=
Q1

k=1Eq(z; �k) of the genus

q, z 2 C , is an entire function of zero type with respect to the order � with

ZeroW = �.

Given q 2 Z+, the function

eq(z; �) := log jEq(z; �)j = log
���1� z

�

���+ qX
m=1

1

m
Re

zm

�m
; z 2 C ; � 2 C nf0g; (4.2)

is said to be the subharmonic Weierstrass kernel of genus q.

If the function

w�(z) :=

Z
C

eq(z; �) d�(�); z 2 C ; (4.3)

with values in [�1;+1), is locally bounded above, then we may say that the

function w� is a Weierstrass�Hadamard potential of genus q of measure �.

A subharmonic version of Prop. 1 (particular case of [22, 4.2]) is

Proposition 2. If 0 =2 supp � for � 2M+ and
R
C

1

j�j� d�(�) < +1, then w�

is a subharmonic function of zero type with respect to the order � with the Riesz

measure �.
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As the next step for further developing these facts, when � = 1, it is possible to
consider the following theorem formulated here with some losses in a substantial

and constructive parts in comparison with the original treatment.

Theorem Kh2 ([23, Theorem 1]). Let f 6� 0 be an entire function of exponen-

tial type with Zerof = (�k), and (k) be a sequence of points of C , k = 1; 2; : : : .
If the series X

k��k 6=0

��� 1
�k

� 1

k

��� (4.4)

converges, then there exists an entire function of exponential type g 6� 0 with

Zerog = �, and with the same indicator function, as f .

Natural expansion of the last result on entire functions of the �nite order �

was announced in [24]. For the role of condition (4.4), the convergence of seriesX
�k 6=0

1

j�kj�
���1� k

�k

��� (4.5)

was o�ered [24, Cor. 1]. There was also formulated a subharmonic version, but

without the proof and in a weaker and less precise form than the main one sub-

mitted in our paper.

Theorem 3 (partial formulations in [24, Theorem], [21, Theorem]). Let � 2
M+ be a measure of �nite type with respect to the order � > 0, and T : C ! C be

a Borel mapping such that the preimage of each bounded set is bounded. If

lim inf
z!1

jTzj
jzj > 0;

Z
CnD(1)

1

j�j�
���1� T�

�

��� d�(�) < +1; (4.6)

then, for every subharmonic function u with the Riesz measure �, we can �nd

a subharmonic function uT with the Riesz measure �T such that, for any number

" > 0, there is an exceptional set E" � C of upper density 6 " for which��uT (z)� u(z)
�� 6 "jzj� for all z 2 C n E": (4.7)

In particular, for any " > 0,8><
>:
uT (z) 6 sup

j��zj6"jzj

u(�) + "jzj� + const+ ;

u(z) 6 sup
j��zj6"jzj

uT (�) + "jzj� + const+ ;
jzj > 1: (4.8)

In addition, if u is a function of �nite type with respect to the order � > 0, then
the function uT is the same, and the indicator function of u coincides with the

indicator function of uT .

P r o o f. Fix " > 0. We will prove the theorem in a few steps.
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1. Isolating of measure from origin. For any given R > 1, we may suppose that

supp �\D(R) = ?. Indeed, if u is a subharmonic function with the Riesz measure

�, then we can represent the function u in a form of sum

u(z) =

Z
C

log j� � zjd
�
�
��
D(R)

�
(�) + uR(z) =: pR(z) + uR(z); z 2 C ;

where �
��
D(R)

is a restriction of the measure � to the disk D(R) and uR is

a subharmonic function with the Riesz measure �
��
CnD(R)

= � � �
��
D(R)

for which

D(R) \ supp
�
�
��
CnD(R)

�
= ?. The logarithmic potential pR satis�es condition

[25, Th. 3.1.2]

pR(z) = �
��
D(R)

(C ) log jzj+O(1=jzj) as z !1: (4.9)

By (2.1)�(2.2) and by boundness of T�1D(R), under the conditions of theorem,

the support of T -shift
�
�
��
D(R)

�
T
of the measure �

��
D(R)

is a compact set and�
�
��
D(R)

�
T
(C ) = �

��
D(R)

(C ). For

(pR)T z :=

Z
C

log j��zjd
�
�
��
D(R)

�
T
(�) =

�
�
��
D(R)

�
T
(C ) log jzj+O(1=jzj); z !1;

in view of (4.9), we have pR(z)� (pR)T z = O(1=jzj) as z !1. The latter means

that if functions uR and uRT satisfy (4.7)�(4.8), then the addition of logarith-

mic potentials pR and (pR)T to them will give exactly (4.7)�(4.8) under possible

increasing of the constant const+, if necessary.

It follows from the �rst condition of (4.6) that for the number b > 0 we can

choose a number R > 1 so large that

bjzj 6 jTzj for all z =2 D(R): (4.10)

The second condition from (4.6) impliesZ
CnD(R)

1

j�j�
���1� T�

�

��� d�(�) =: �(R)! 0 as R!1: (4.11)

Now we de�ne more exactly a choice of R depending upon " and other parameters.

We consider only that the number R > 1 is chosen so that inequality (4.10) takes

place and, besides,

supp �
\

D(R) = ?: (4.12)
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Thus, obviously, for some number B > 0 the inequality

�rad(t) 6 Bt� (4.13)

holds for all t > 0. It is important to note that here the procedure of rejection of

restriction of the measure � on the disk D(R) does not increase the constant B

under increasing of R. Note also, that inclusion T�1D(t) � D(t=b) follows from
(4.10) for all t > R. Hence, according to (2.1) we obtain

�radT (t) = �T
�
D(t)

�
= �

�
T�1D(t)

�
6 �rad(t=b):

In particular, it means that under agreements (4.12)�(4.13) we have

supp �T \D(bR) = ?; �radT (t) 6
B

b�
t� for all t > 0; (4.14)

i. e., the measure �T has a �nite type with respect to the order �, and 0 =2 supp �T.

2. The main estimated integral . For q from (4.1), consider the integral*

I(z) :=

Z
C

eq(z; �) d(�T � �)(�): (4.15)

Our goal is to get the estimate jI(z)j 6 "jzj� for all z laying outside some excep-

tional set of the upper density 6 ".

We set

D1=9 :=

�
� 2 C :

���1� T�

�

��� < 1

9

�
; �1=9 := �

��
D1=9

(4.16)

is a restriction of the measure � to the set D1=9, and

�
1=9
T := (�1=9)T ; ~�1=9 := � � �1=9; ~�

1=9
T := (~�1=9)T = �T � (�1=9)T : (4.17)

Taking into account (2.2), (4.12) and (4.14), we represent I(z) in the form of

algebraic sum

I(z) =

Z
C

�
eq(z; T �)� eq(z; �)

�
d�1=9(�)

+

Z
C

eq(z; �) d~�
1=9
T � �

Z
C

eq(z; �) d~�
1=9(�) =: I1=9(z) + w

~�
1=9
T

(z)� w~�1=9(z);

(4.18)

*Convergence (�niteness) of the integrals arising further for the points z outside some excep-

tional set will follow from the estimates.
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where we use the notation (4.3) for the Weierstrass�Hadamard potentials w
~�
1=9

T

and w~�1=9 of the measures ~�
1=9
T and ~�1=9 of genus q.

By the second condition from (4.6), for � 2 C nD1=9, i.e., j1� (T�)=�j > 1=9,
in view of agreement (4.10), for j�j > R we obtain

bj�j 6 jT�j; 1

j�j� 6
9

j�j�
���1� T�

�

���; 1

jT�j� 6
1

b�j�j� 6
9

b�j�j�
���1� T�

�

���:
Hence, for the restriction ~�1=9 of measure � from (4.17), in view of (4.12) and

(4.6), we haveZ
C

1

j�j� d~�
1=9(�) 6 9

Z
CnD(R)

1

j�j�
���1� T�

�

��� d�(�) < +1:

Similarly, for T -shift ~�
1=9
T from (4.17), using (4.14), (4.12), and (4.6), we getZ

C

1

j�j� d~�
1=9
T (�) =

Z
C

1

jT�j� d~�
1=9(�) 6

1

b�

Z
C

1

j�j� d~�
1=9(�) < +1:

By Proposition 2, the �niteness of these two integrals implies that the Weierstrass�

Hadamard potentials w~�1=9 and w
~�
1=9
T

are subharmonic functions of zero type with

respect to the order �.

Proposition 3 (partial case of [12, Th. 2]). Let u be a subharmonic function

on C , and N : [0;+1) ! [1;+1) be an increasing function. Then, for some

absolute constants a1; a2, the inequality

u(z) > �a1
�

max
j�j=2jzj

u(�)
�
� log

�
a2N(jzj)

�
holds for all z 2 C n E0, where E0 is an exceptional set of the form (1.5) such

that X
jzj j<r

tj 6

rZ
0

dt

N(t)
:

If the function N increases to 1 su�ciently slowly, then the application of

Prop. 3 to each of functions w~�1=9 and w
~�
1=9
T

gives the relationships

��w~�1=9(z)
�� + ��w

~�
1=9
T

(z)
�� = o

�
jzj�
�
as z 2 C n E0, z !1; (4.19)

where E0 is some set of zero upper density. In other words, the set E0 is a C0-set

[1]. Hence, going back to (4.18) for the integral I(z) from (4.15), the problem
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becomes simpler: we are to prove only the estimate jI1=9(z)j 6 "
2
jzj� outside the

set of upper density 6 ". Further, for short, we designate I1=9(z) and �
1=9 as I(z)

and �. By de�nitions (4.16) and (4.17), for the proof of estimate jI(z)j 6 "
2
jzj�,

we may suppose that the mapping T also satis�es (together with (4.10)�(4.11))

���1� T�

�

��� < 1

9
; and, hence, also

8

9
j�j 6 jT�j 6 10

9
j�j for all � 2 S� ; (4.20)

where S� � C is a supporting set of the measure �.

3. The integral I(z). Let us rewrite the integral I(z) from (4.15) by the rule

(2.2), taking into account the de�nition of subharmonic Weierstrass kernel of

genus q from (4.2), in the following form:

I(z) =

Z
C

�
eq(z; T �)� eq(z; �)

�
d�(�)

=

Z
j�j>4jzj

�
eq(z; T �)� eq(z; �)

�
d�(�)

+

Z
j�j<4jzj

qX
m=1

1

m
Re
� zm

(T�)m
� zm

�m

�
d�(�)

+

Z
D(4jzj)nD(z;jzj=2)

�
log
���1� z

T�

���� log
���1� z

�

���� d�(�)

+

Z
D(z;jzj=2)

�
log
���1� z

T�

���� log
���1� z

�

���� d�(�)

=: J1(z) + J0(z) + L(z) + L0(z): (4.21)

3.1. An estimate of the integral J1(z). Under the condition jT�j > 8j�j=9
from (4.20), we use the expansion in series at j�j > 4jzj for

eq(z; T �)� eq(z; �) = �
1X

m=q+1

1

m
Re
� zm

(T�)m
� zm

�m

�
:

It implies ��eq(z; T �)� eq(z; �)
�� 6 1X

m=q+1

jzjm
m

��� 1

(T�)m
� 1

�m

���: (4.22)
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For any � 6= 0 and T� 6= 0, we have

��� 1

(T�)m
� 1

�m

��� = jT� � �j �

���m�1P
k=0

(T�)m�1�k�k
���

jT�jmj�jm ;

and also ��� 1

(T�)m
� 1

�m

��� 6 jT� � �j �
m
�
maxfjT�j; j�jg

�m�1

jT�jmj�jm :

Hence, under the conditions (4.20), for each � 6= 0, T� 6= 0, m > 1, we have

��� 1

(T�)m
� 1

�m

��� 6 jT� � �j �
m
�
maxfjT�j; j�jg

�m
jT�jmj�jm+1

6

���1� T�

�

��� � m2m

j�jm : (4.23)

Using (4.22), for j�j > 4jzj we obtain

��eq(z; T �)� eq(z; �)
�� 6 ���1� T�

�

��� 1X
m=q+1

2mjzjm
j�jm 6

���1� T�

�

��� 2q+2jzjq+1j�jq+1

and

��J1(z)
�� 6 Z

j�j>4jzj

��eq(z; T �)� eq(z; �)
�� d�(�) 6 Z

j�j>4jzj

���1� T�

�

��� 2q+2jzjq+1j�jq+1 d�(�)

= jzj�
Z

j�j>4jzj

2q+2jzjq+1��
j�jq+1��

�
1

j�j�
���1� T�

�

���� d�(�) for all z 2 C :

By the de�nition from (4.1), for q we have q + 1 � � > 0. Therefore, for all

j�j > 4jzj,
2q+2jzjq+1��
j�jq+1�� 6

2q+2

4q+1��
= 22��q 6 4�:

So, we obtain the �nal estimate

��J1(z)
�� 6 4�jzj�

Z
j�j>4jzj

1

j�j�
���1� T�

�

���d�(�) for all z 2 C : (4.24)
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3.2. An estimate of the integral J0(z) from (4.21). Using (4.23) to the

integration element of J0(z), for any 0 < j�j < 4jzj and T� 6= 0, we have

�����
qX

m=1

1

m
Re
� zm

(T�)m
� zm

�m

�
d�(�)

����� 6
qX

m=1

jzjm
m

��� 1

(T�)m
� 1

�m

���d�(�)
6

���1� T�

�

��� qX
m=1

2mjzjm
j�jm = jzj� 1

j�j�
���1� T�

�

��� qX
m=1

2m
�
j�j=jzj

���m
:

Besides, by de�nition of q from (4.1), for all m = 1; 2; : : : ; q, we obtain ��m > 0,
and j�j=jzj < 4. Hence�����

qX
m=1

1

m
Re
� zm

(T�)m
� zm

�m

�
d�(�)

����� 6 22�
�
1� 1

2q

�
jzj� 1

j�j�
���1� T�

�

���:
So, we obtain the �nal estimate

jJ0(z)j 6 4�jzj�
Z

j�j<4jzj

1

j�j�
���1� T�

�

���d�(�) for all z 2 C : (4.25)

3.3. An estimate of the integral L(z) from (4.21). For the integration element

of the integral L(z), we have the following identity:

lT (z; �) := log
���1� z

T�

���� log
���1� z

�

��� � log

����1 + z�

� � z
�
�1
�
� 1

T�

����� ; (4.26)

�T � 6= 0. Let us estimate above the right-hand side for � 2 D(4jzj) nD(z; jzj=2),
i. e., for

0 < j�j < 4jzj; j� � zj > 1

2
jzj; T � 6= 0: (4.27)

Under these conditions, considering the inequality jT�j > 8j�j=9 from (4.20),

in view of (4.26), we get

lT (z; �) 6 log

�
1 +

jzjj�j
j� � zj �

���1
�
� 1

T�

���� 6 jzjj�j
j� � zjjT�j �

���1� T�

�

���
6

2j�j
jT�j �

���1� T�

�

��� 6 3
���1� T�

�

��� 6 3 � 4�jzj� 1

j�j�
���1� T�

�

���: (4.28)

Under the same conditions, using the identity (4.26), we estimate above

�lT (z; �) � log

����1 + z � T�
T� � z

�
� 1

T�
� 1

�

����� 6 jzj
jT� � zj �

���1� T�

�

���: (4.29)
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In view of (4.20), we obtain j� �T�j < j�j=9. Hence, under the conditions (4.27),

jT� � zj > j� � zj � j� � T�j > 1

2
jzj � 1

9
j�j > 1

2
jzj � 4

9
jzj = 1

18
jzj:

Thus, we can extend (4.29) just as (4.28):

�lT (z; �) 6 18 �
���1� T�

�

��� 6 18 � 4�jzj� 1

j�j�
���1� T�

�

���:
The last one together with (4.28) gives a �nal estimate for the module of the

integral

jL(z)j 6
Z

D(4jzj)nD(z;jzj=2)

��lT (z; �)�� d�(�) 6 18 � 4�jzj�
Z

j�j<4jzj

1

j�j�
���1� T�

�

��� d�(�)
for all z 2 C . Hence, using (4.25) and (4.24), under condition (4.11), we get

an intermediate estimate

jI(z)j 6 19�4�jzj�
Z
C

1

j�j�
���1�T�

�

���d�(�)+jL0(z)j = 19�4�jzj��(R)+jL0(z)j (4.30)

for all z 2 bC after simpli�cations of items 1 and 2. The required estimate for

the module of

L0(z) =

Z
D(z;jzj=2)

lT (z; �) d�(z); (4.31)

with lT from (4.26), is possible only outside some exceptional set constructed

below.

4. Normal points. Let us give a variant of the de�nition of normal points.

De�nition ([17, � 2]). Let f > 0 be a Borel function on C , f > 0 on � 2M+.

Let d : C ! (0; 1=2] be a Borel function on C . We shall say that z 2 C is (f; d)-
normal with respect to � if

�(z; t) 6 f (d)(z) t for all t 6 d(z)jzj where f (d)(z) := sup
j��zj6d(z)jzj

f(�):

(4.32)

A partial case of [17, Normal Points Lemma] is

Lemma. A set of points z 2 C that are not (f; d)-normal with respect to the

measure � 2M+ is contained in a union of the countable set of the disks D(zj ; tj),
j = 1; 2; : : : , such that for any �-measurable set D � CX

zj2D

tj 6 a

Z
Dd

d�

f
and tj 6 d(zj)jzj j for all j 2 N, (4.33)
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where a is an absolute constant (we can choose a = 18), and by de�nition Dd :=S
z2D

D(z; d(z)jzj).

In our proof we choose d � 1=2, and f(z) � M jzj��1 for all z 6= 0 where

M > 0 is a constant and then we consider the subset E � C of points z that are

not (f; d)-normal with respect to � or �T . In other words, z 2 C nE if

maxf�(z; t); �T (z; t)g 6 f (1=2)(z) � t = Mc�jzj��1t for all 0 < t 6 jzj=2; (4.34)

where c� := maxf3��1;1g

2��1
. By Lemma, the set E can be covered with the disks

D(zj ; tj), j 2 N, such that, according to (4.33), we have tj 6 jzj j=2, j 2 N, and

X
jzj j6r

tj 6 a

Z
�
D(r)

�1=2
d(� + �T )(z)

M jzj��1 =
a

M

3r=2Z
0

d
�
�rad(t) + �radT (t)

�
t��1

:

Hence, in view of (4.12)�(4.13), (4.14), using integration by parts, we obtain

X
jzj j6r

tj 6
a

M

0
B@�2

3

���1 �rad(3r=2)
r��1

+ (�� 1)

3r=2Z
0

�rad(t) dt

t�

1
CA

+
a

M

0
B@�2

3

���1 �radT (3r=2)

r��1
+ (�� 1)

3r=2Z
0

�radT (t) dt

t�

1
CA

=
3aB

2M

�
1 +

1

b�

�
� r; r > 0:

We choose M > 0 such that the multiplier in front of r is so large that it does

not exceed "=6, i. e., X
jzj j6r

tj <
"

6
� r for all r > 1: (4.35)

Further, for short, we call the set E constructed here an exceptional set , and the

points from C n E normal points.

It is signi�cant that the �screening-out of a part� of the measures � and �T
under increasing R in 1 does not change conclusions of this item, since the

constants B and M , as well as the disks D(zj ; tj) are not changed for all R > 1.
Besides, repeating word by word standard reasonings from the �nishing part of

[23, item 1)], we can conclude that for any point z0 2 C , jz0j > r0, there exists

a number �(z0) 2 (0; ") such that the circumference @D
�
z0; �(z0)jz0j

�
contains only

normal points.
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5. An estimate of the integral L0(z) from (4.31). First, using (4.26) for lT , we

estimate the upper bound . For j��zj < jzj=2, under the condition (4.20), we have

jT�j > 8j�j=9. Hence

lT (z; �) 6 log

�
1 +

jzjj�j
j� � zjjT�j

���1� T�

�

���� 6 log

�
1 +

9jzj=8
j� � zj

���1� T�

�

���� :
For M and c� from (4.34), we choose a parameter c > 0 so small that

Mc�

�
c+ c log

�
1 +

1

2c

��
6

"

8
and simultaneously c

�5
3

�� B
b�
6

"

8
: (4.36)

Then we write down a previous estimate of lT in a somewhat weakened form

lT (z; �) 6 log

�
1 +

2jzjc
j� � zj �

1

c

���1� T�

�

����

6 log

�
1 +

2jzjc
j� � zj

�
+ log

�
1 +

1

c

���1� T�

�

����

6 log

�
1 +

2jzjc
j� � zj

�
+

1

c

���1� T�

�

���: (4.37)

Integrating this inequality with respect to � over D(z; jzj=2), by (4.31) we obtain

L0(z) 6

Z
D(z;jzj=2)

log

�
1 +

2jzjc
j� � zj

�
d�(�) +

1

c

Z
D(z;jzj=2)

���1� T�

�

���d�(�)

=

jzj=2Z
0

log

�
1 +

2jzjc
t

�
d�(z; t) +

1

c

Z
D(z;jzj=2)

j�j� 1

j�j�
���1� T�

�

���d�(�)

6

jzj=2Z
0

log

�
1 +

2jzjc
t

�
d�(z; t) +

2�

c
jzj��(R); (4.38)

where �(R) is a notation for the integral from (4.11). We estimate the integral in

the right-hand side of (4.38) only for normal points z. Integration by parts gives

jzj=2Z
0

log

�
1 +

2jzjc
t

�
d�(z; t) = log(1 + 4c)�(z; jzj=2) + 2cjzj

jzj=2Z
0

�(z; t) dt

t(t+ 2cjzj)

6 log(1 + 4c)�(z; jzj=2) + 2cjzj
jzj=2Z
0

�(z; t) dt

t(t+ 2cjzj) 6 4c �Mc�jzj�=2
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+2cjzj
jzj=2Z
0

Mc�jzj��1 dt
t+ 2cjzj = 2Mc�jzj�

�
c+ c log

�
1 +

1

4c

��
: (4.39)

Hence, in view of (4.36), (4.38) implies

L0(z) 6
"

4
jzj� + 2�

c
jzj��(R); z 2 C nE; (4.40)

where E is an exceptional set from item 4.

Now we establish a lower bound .

The identity (4.29) with the parameter c, as in (4.37), gives

�lT (z; �) 6 log

�
1 +

jzj
jT� � zj �

���1� T�

�

����

6 log

�
1 +

jzjc
jT� � zj

�
+ log

�
1 +

1

c

���1� T�

�

����

6 log

�
1 +

cjzj
jT� � zj

�
+

1

c

���1� T�

�

���
Integrating this inequality with respect to � over D(z; jzj=2), similarly to (4.38),

we obtain

�L0(z) 6

Z
D(z;jzj=2)

log

�
1 +

cjzj
jT� � zj

�
d�(�) +

2�

c
jzj��(R): (4.41)

If � 2 D(z; jzj=2), then by (4.20) we have jT� � �j < j�j=9 6 jzj=6 and

jT� � zj 6 jT� � �j+ j� � zj 6 1

6
jzj+ 1

2
jzj 6 2

3
jzj:

It means that inclusion D(z; jzj=2) � T�1D(z; 2jzj=3) is ful�lled. Therefore, for

the integral from the right-hand side of (4.41) we can getZ
D(z;jzj=2)

log

�
1 +

cjzj
jT� � zj

�
d�(�) 6

Z
T�1D(z;2jzj=3)

log

�
1 +

cjzj
jT� � zj

�
d�(�):

By (2.2) and (4.14), for normal points z we obtainZ
D(z;jzj=2)

log

�
1 +

cjzj
jT� � zj

�
d�(�) 6

Z
D(z;2jzj=3)

log

�
1 +

cjzj
j� � zj

�
d�T (�)

=

2jzj=3Z
0

log

�
1 +

cjzj
t

�
d�T (z; t) =

0
B@

jzj=2Z
0

+

2jzj=3Z
jzj=2

1
CA log

�
1 +

cjzj
t

�
d�T (z; t)
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6

jzj=2Z
0

log

�
1 +

cjzj
t

�
d�T (z; t) + log(1 + 2c)�radT (5jzj=3)

6 log(1 + 2c)�T (z; jzj=2) + cjzj
jzj=2Z
0

�T (z; t) dt

t(t+ cjzj) + 2c
�5
3

�� B
b�
jzj�:

Hence, for normal point z 2 C nE, in view of (4.34), in the same way as in (4.39)

we get

Z
D(z;jzj=2)

log

�
1 +

cjzj
jT� � zj

�
d�(�)

6Mc�jzj�
�
c+ c log

�
1 +

1

2c

��
+ 2c

�5
3

�� B
b�
jzj�:

Then, in view of (4.36), (4.41) implies

� L0(z) 6Mc�jzj�
�
c+ c log

�
1 +

1

2c

��
+ 2c

�5
3

�� B
b�
jzj� + 2�

c
jzj��(R)

6
"

8
jzj� + "

4
jzj� + 2�

c
jzj��(R) = 3"

8
jzj� + 2�

c
jzj��(R):

The above and (4.40) give the �nal estimate

jL0(z)j 6
3"

8
jzj� + 2�

c
jzj��(R); z 2 C nE:

Thus, by (4.30), we have

jI(z)j 6 �(R)

�
19 � 4� + 2�

c

�
jzj� + 3"

8
jzj�:

As it was said at the end of item 4, we can increase the number R > 1 from

1 without any limits . Considering (4.11), we can choose R to be so large that

�(R)
�
19 � 4�+2�=c

�
6 "=8. Then jI(z)j 6 "

2
jzj� for z 2 C nE. But remembering

the arrangements given at the end of item 2, we say that I(z) is I1=9(z) from

(4.18). For the initial integral I(z) from (4.15), in view of (4.18) and (4.19), we

obtain jI(z)j 6 "jzj� for all normal points z 2 C n (E [E0) where E0 is a C0-set.

By (4.35), the set E" := E[E0 has the upper density < "=6. Then the concluding

remark of item 4 remains in force in the following form: for any point z0 2 C ,

jz0j > 1, there exists a number �(z0) 2 (0; ") such that @D
�
z0; �(z0)jz0j

�
\E" = ?.
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6. From the integral I(z) to the functions u and uT . Let u be a function from

Theorem 3. By item 1, we can assume that 0 =2 � and 0 =2 �T . Since the Riesz

measure � has a �nite type with respect to the order �, the function u admits the

Weierstrass�Hadamard representation of genus p = [�] with a harmonic addition

hu (see [22, 4.2]):

u(z) =

Z
C

ep(z; �) d�(�) + hu(z); z 2 C : (4.42)

Here q from (4.1) is connected with p by the rule

q =

(
p = [�]; if � is noninteger;

�� 1 = p� 1; if � is integer:

Now we set

uT (z) :=

Z
C

ep(z; �) d�T (�) + hu(z) + v�(z); z 2 C ; (4.43)

where, by de�nition, v�(z) � 0 if � is noninteger , and

v�(z) := Re
z�

�

Z
C

� 1

��
� 1

(T�)�

�
d�(�) if � is integer; z 2 C : (4.44)

The function uT is well-de�ned. First, the integral from (4.43) is a Weierstrass�

Hadamard potential of the measure �T of �nite type with respect to the order �

(see (4.14) and [22, 4.2]), and, second, for the integer � the integral from (4.44)

is �nite. Indeed, it follows from (4.23) that��� Z
j�j>R

� 1

��
� 1

(T�)�

�
d�(�)

��� 6 �2�
Z

j�j>R

���1� T�

�

��� 1

j�j� d�(�);

where, by (4.6), the right-hand side tends to 0 as R ! +1. By construction

(4.44), the function v� is harmonic. Therefore, by construction (4.43), uT is

a subharmonic function with the Riesz measure �T .

From the form (4.2) of the subharmonic Weierstrass kernels of genus q and p

and the representations (4.42)�(4.44) for u and uT it follows that

uT (z)� u(z) �
Z
C

eq(z; �) d(�T � �)(�) = I(z);

where I(z) is the integral from (4.15). Therefore, by item 5, for any " > 0 we get��uT (z)� u(z)
�� = jI(z)j 6 "jzj� for all z 2 C n E"; (4.45)
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where the exceptional set E" has the upper density 6 ". Thereby, the main part

of Th. 3 is proved.

By principle of the maximum for subharmonic functions, the relations (4.8)

follow from (4.45) and concluding remark of item 5 on circumferences outside

E". Finally, the last assertion on the type and the indicator function of uT is

an evident consequence of (4.8).

This completes the proof of Th. 3.

R e m a r k 3. By representations (4.43)�(4.44), our construction of the function

uT by u is completely constructive.

R e m a r k 4. If we replace the �rst condition from (4.6) by its nonasymptotic

analog inf
�2C

jT�j=j�j > 0, then there implies a condition �. . . the preimage of any

bounded set under T is bounded�.

In conclusion, we give a version of Th. 3 for entire functions.

Theorem 4 (partial formulations in [24, Corollary 1]). Let f 6� 0 be an entire

function with zero set Zerof = (�k) =: � of the �nite upper density with respect

to the order � > 0. Let � = (k) � C , k 2 N, be a sequence. If the series (4.5)

converges and lim inf
k!1

jkj=j�kj > 0, then there exists an entire function g with

Zerog = � such that for any number " > 0 there is a set E" � C of the upper

density 6 " that��log jg(z)j � log jf(z)j
�� 6 "jzj� for all z 2 C n E":

If the function f is of a �nite type with respect to the order �, then the function

g is of the same type, and the indicator function (with respect to �) of function f

coincides with the indicator function (with respect to �) of function g.

P r o o f. By Theorem 1, there exists an entire function ~f with the sequence

of simple zeros Zero~f = (~�k) =: ~� such that��log j ~f(z)j � log jf(z)j
�� 6 const+ for all z 2 C n ~E; (4.46)

where the set ~E is covered with the disks having a �nite sum of radii, and j~�k �
�kj 6 1 for all k 2 N (� � 1 chosen su�ciently). Then the condition (4.5) holds

if we replace � by ~�, because j~�k=�kj ! 1 as k ! +1 if � is in�nity. Therefore,

for su�ciently large k0 2 N,

X
k>k0

1

j~�kj�
���1� k

~�k

��� 6
 
max
k>k0

��� ~�k
�k

�����1
! X

k>k0

1

j�kj�
j�k � kj+ j~�k � �kj

j�kj

6 const+

0
@X

k>k0

1

j�kj�
���1� k

�k

���+ X
k>k0

1

j�kj�+1

1
A ; lim inf

k!1

jkj
j~�kj

> 0: (4.47)
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Here the penultimate sum converges by condition, and the last sum converges

since the sequence � has the �nite upper density with respect to �.

Now we can consider a mapping T : C ! C that is de�ned by rule T ~�k = k
and Tz � z for z =2 ~�. Then, by de�nition (1.1), the integer-valued measure n�
is a T -shift of the integer-valued measure n~�

, i. e., n� = (n~�
)T . The convergence

of the �rst sum in (4.47) and the last relation in the same place mean that the

measure � := n~�
satis�es the �rst and the second conditions from (4.6). Besides,

the last relation in (4.47) guarantees that the preimage of each bounded set is

bounded. Therefore, by Th. 3, for the subharmonic function u := log j ~f j there
exists a subharmonic function uT with the Riesz measure n� such that (4.7) holds,

as well as the rest of conclusions of Th. 3. Hence there is an entire function g

with Zerog = � such that uT = log jgj, as the Riesz measure n� of function uT is

an integer-valued measure. The last together with (4.46) completes the proof of

Th. 4.

The Authors express their deep gratitude to the reviewer of the paper for

important remarks and amendments.
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