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STUDY OF SPECTRAL AND POLARIZATION
CHARACTERISTICS OF LAYERED CHIRAL MEDIA

Study of layered chiral media is interesting both for fundamental and applied physics. Such media may be used for design of mi-
crowave devices such as filters and polarizers. Despite the fact that the spectral and polarization characteristics of the layered media are
studied well enough now, the layered chiral media are studied insufficiently. In this paper we study the spectral and polarization characteris-
tics of layered chiral media using the propagation matrix method. The coefficients of the propagation matrix of the periodically layered chiral
medium are obtained. The transmission and reflection coefficients of linearly polarized electromagnetic waves for the structure consisting of
planar chiral layers were calculated. The boundaries of the forbidden bands for a periodic medium, which unit cell consists of two different
chiral layers were determined. It is shown that the boundaries of the forbidden bands do not depend on the chirality parameter of the layers of
the structure. It was found that for certain values of the layers thicknesses, the forbidden bands width tends to zero. It is found that the pro-
posed calculating method for the reflection and transmission coefficients can be used to determine the effective constitutive parameters of

artificial chiral metamaterials. Fig.: 3. Ref.: 13 titles.
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At present, much attention is given to the
study of electromagnetic waves propagation through
the layered media [1-5]. But the study of properties
of layered chiral media is still insufficient. However,
the study of such media is interesting both for fun-
damental and applied physics. Layered chiral media
can be used for design of magnetically controllable
microwave devices such as filters, polarizers, etc.
The study of layered chiral media, which include
magnetically active elements is very important be-
cause the effective constitutive parameters of such
media can be controlled by static magnetic field.

The aim of work is to study the electromag-
netic waves propagation in layered chiral media us-
ing the propagation matrix method. The main atten-
tion is given to the determination of effective consti-
tutive parameters of chiral metamaterials as analogs
of optically active and magnetically active materials.

1. Calculation of spectral and polarization
characteristics of layered chiral media using
propagation matrix method.

To solve the problem we write the system of
Maxwell’s equations for harmonic electromagnetic
fields in chiral media:
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where j is the conduction current density vector, E

and H are electric and magnetic field intensity vec-

tors, D and B are electric and magnetic induction
vectors, k, =w/c is the propagation constant for a
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vacuum, @ is the angular frequency of the electro-
magnetic wave, c is the light velocity in vacuum.

We assume that the electric field intensity
vector of a plane wave propagating along the z-axis
has the following form:

E=(E,,E,00e"*™", )

where £ is the propagation constant for the medium.
To define the magnetic field vector H we
find the vector B using expressions (1) and (2):

B= (—Ey,Ex,O)kie"“‘Z—””. 3)
0

We define the constitutive equations for a
chiral medium as follows [6, 7]:
D =¢E +ixH,
.. “4)
B=uH —ikE,
where ¢ and g are dielectric permittivity and mag-
netic permeability, x is the chirality parameter.

From equations (2)—4), we find the vector H:
H _B+ink ((-E,.E ,0)L+

H P  kop

)
+i(E,, E,0) el
U

Let us consider the case of normally propa-
gation of plane electromagnetic waves through the
layer of chiral medium with thickness d (Fig. 1).

In Fig. 1 layers 1 and 3 are represented by
non-chiral medium with constitutive parameters &,
4 and €3, py. Layer 2 is represented by a chiral

medium with constitutive parameters &,, 4, and x.
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Let the incident wave with the amplitude of E|
be linearly polarized along the x axis. The expres-
sions for the incident (index “inc”) and reflected (in-
dex “ref”) electromagnetic field in medium 1 are the
following:

E-linc — (El,0,0)ei(klz_wt),

E]ref — (E{;ff, E]r;f ’O)ei(—klz—wt)’

[yinc -1 _i(kz—ot) (6)
H™ =(0,E,00Z ™" ,

gln?f — (Elrye./"_Elr;f’O) Zl—l ei(—klz—a)t)’

where ky =kony =kyJe4y and Z, =/ /g are

the propagation constant and the characteristic im-
pedance in medium 1.
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Fig. 1. The geometry of the problem

In chiral medium 2, there are two eigen
waves with right (+) and left (-) circular polariza-
tion [7, 8]. The expressions for the electromagnetic
waves in medium 2, propagating along the negative
(index “ref”) and positive (index “inc”) direction of
the axis z, are as follows:

Eg_': _ (1 +i O) énc; e[(kzizfa)t)
xT =" Xt bl
E5d = (Lxi,0)Epd e/ Thassme

T =" xt bl
]_—Iénic — (11’1’0) Zz—lEé‘i;Cci ei(kﬁz—a)t)’
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where k,, = kyn,, =ko(\ex 1, tx)and Z, = Jp, / &,

are the propagation constant and characteristic im-
pedance for waves with right and left circular polari-
zation in medium 2 [8].

In medium 3 the expression for the electro-
magnetic fields of the transmitted wave are the fol-
lowing:

Ey = (E;,, E3,,0)' 55",

)

@®)

Hy =(-E;, E;,.0) Z;' 5570,

where ky =kony =kgy/&30, and Zy =,/ /&5 are

the propagation constant and characteristic impe-
dance in medium 3.

Let us suppose that conditions for the consti-
tutive parameters at which the electromagnetic field
intensity in chiral medium 2 is limited at z — oo.
For this purpose, considering that according to equa-
tions (7), the term ¢™* s a finite value at z — o.
Therefore, the constitutive parameters of the chiral
layer must satisfy the following condition:

1m0, )2 5. )

To find the unknown wave amplitudes E{,ff ,

EY, Y., BV, By, EY | Es, Es, weuse the

ly » &2x+> H2x—> H2x4> H2x—>
boundary conditions of equality of the tangential
component of the electric and magnetic field intensi-

ties at the chiral layer boundaries:
{E,(z=0;d)}=0,{E, (z = 0;d)}=0, 0
{H(z=0:d)}=0,{H ,(z = 0;d)|=0. (19)

Let us write the amplitudes of the electric
and magnetic field intensities at the boundary of lay-
ers 1 and 2. From boundary conditions (10) on the
boundary z =0 we obtain:

E . (0)=EY +E +EY +EY

2x+ 2x+ 2x—2
E,(0)=i(Esy, —EyS +E5Y, —E37),

. 7=/ inc inc ref ref (1 1)
Hx(o) =-1 ZZ (E2x+ —H2x- _E2x+ + E2x— ’

H,(0)=25 (B, + By — By, —E3)).

2x+ 2x+

By solving equations system (11) with respect to
Ere g EX  and EXY, we obtain:

2x+° H2x—> F2x+ 2x->

E(0)FiE,(0)£iZ,H (0)+Z,H ,(0)

EL,
. . 4 (12)
Y, = E (0)FiE,(0)FiZ,H . (0)-Z,H ,(0)
Xt 4 .

Let us write the amplitudes of the electric
and magnetic fields at the boundary of layers 2 and 3.
From boundary conditions (10) on the boundary
z=d we obtain:

inc _iky,d inc ik, d
Ex (d) = E2x+e =+ EZx—e =
ref —ik,_d ref —ik,.d
+Ey e + Byl et

. inc ik, d inc ik, d
E,(d)=i(ESY, " — Ef e

ref —ik, d ref —iky.d
+EIY gk —EZX/ie #9),

2x+ (13)
H (d)= -Z—l Einc ik, d Einc ik, _d
(d)=—1Z; (Ejy e Lo, € -
_Eé‘if;e—lkz,d + E;i)(_e_lk2+d)7

=1 pinc ik, d inc ik, d
H,(d)=Z; (Eyp,e™" + By e =

_E e hed e giady
By substituting E5', and E7, in expressions (13),

we obtain:
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E (d)=E (0)cos(k,d)cos(kyx d)+

+ E,(0)cos(k,d) sin(kgx d) —

—H (0)i Z, sin(k,d)sin(kyx d) +

+H ,(0)i Z, sin(k,d) cos(kyx d),

E,(d) =-E(0)cos(k,d)sin(kyx d) +

+ E, (0)cos(k,d)cos(koicd) —

-H (0)i Z, sin(k,d) cos(kox d) —

— H ,(0)i Z, sin(k,d) sin(kox d),

H (d)=E (0)i Z;" sin(k,d)sin(kyx d)—
—E (0)i Z;" sin(k,d) cos(kox d) +

+H . (0)cos(kyd)cos(kox d) +

+ H ,(0) cos(k,d)sin(kyik d),

H. (d)= E)C(O)iZz’1 sin(k,d) cos(kyx d) +
+E,(0)i Z;" sin(k,d)sin(kox d) -

—H . (0)cos(k,d)sin(kyx d) +

+ H ,(0)cos(k,d)cos(kyx d),

where k&, =kyn, =ky(y/e,44, ). The expression (14)
can be written in matrix form as:

(14)

E.(d) E.(0)
Ed)| 1E0)]
HJ(d)| “|H. 0|
H,(d) H,(0)
(15)
My M, M3 My ) E(0)
| My My My My, E,(0)
My My My My, | H(0) ]
My My My My )\ H,(0)

where elements of matrix M are as follows:
M, =cos(k,d)cos(kyx d),
M, = cos(kyd)sin(kyx d),
M 5 =—i Z, sin(k,d)sin(kyx d),
M, =iZ,sin(k,d)cos(kyx d),
My ==My, My =M,
My =-My, Myy =My, (16)
My =-M; 22—2, My, =-M,, 22—2’
Mz =My, Msy =My,
My =My Zfz’ My =-M; 2272’
My =-Myy, My =M.
Thus, expression (15) relates the tangential
components of the electromagnetic fields on the op-

posite boundaries of the chiral layer.
Let wus introduce the column vector

w(2) = (E,(2); E,(2); H,(2); H (), composed

from the tangential components of the electromagnet-
ic field in the structure under study. Then its value on
the boundary z =0 is the following:

Exl(o) E1
E,(0) EY
nO=| " =N
! Hxl(o) E]yf
H,(0) 0
ref (17)
E +E;
N
= ZI*IE{;/ s
2B - )
1 1 0 O
0 0 1 0
where N = i .
o o z'o
zb -z7b 0 0
At the boundary z=d we have:
Ex3 (d) E3xeik3d
Ey5(d) E, e
vid)=| = (18)
Hg(d) | | -Z7'E; ™
Hy(d)) | z7'Ey ™

From expressions (17)—(18) we find the relation be-
tween the tangential components of the electric and
magnetic field at the boundaries of the chiral layer:

W, (d)=My,(0)=My,(0) =y;(d) =

E'1 ‘ E3xeik3d
wn | B (19)
- E | -1 ikyd |
ly _Z3 E3ye
0 Z3—1E3xeik3d

From (19) we find the amplitudes of the electromag-
netic field tangential components in medium 1 and 3:

Eref - —E, (M, +Zl_1M14)—Z3(M41 +Zl_1M44)
1 - _ _ 1)
' My, -2, 1M14)_Z3(M41_Zl 1M44)

E[Y =0,

Es, = (E\(M, +Z'Myy) + (20)
+ Elr;f (M, =27 My )e ™,

Ey, = (B, (M, + Zl_lM24)+

+ E[Y (M, - Z; "My, ))e ™.

We find transmission and reflection coeffi-
cients of electromagnetic waves through the chiral
layer using the energy flux density [9]:

S=-"SRe[ExH". Q1)
8

Expressions for the transmission 7 and
reflection R coefficient are as follows:
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tr ref
- R=Cr @)

where ™, $7, S are normal components of the

energy flux density for the incident, reflected and
transmitted waves correspondingly. Analytic expres-
sions for these components are the following:

> C * *
Sé = gRe(szHw - E3yH3x) =

¢
8nZ,4

(|E3x|2 + |E3y|2)a

St =g (B HT BT =
& ’

T (23)

— £
81 Z,

1x

>

sie—_° _E?.
8 Z,
Note that as expected for non-absorbing

chiral medium (& =0, u; =0, k" =0) the relation

T+R =1 is satisfied. Besides, one more important
conclusion should be made from these expressions:
the transmission 7 and reflection R coefficients are
independent of the chirality parameter.

Now, in accordance with the aim of our
study let us find the rotation angle of the polarization
plane @ for the linearly polarized electromagnetic
wave as the ratio of the transmitted wave electro-
magnetic field tangential components in medium 3:

E
6= arctg( E3y J = —arctg(tg(kyx'd)) = —kyxd, 24)

3x

wl2<60<x/2.

2. Study of the band structure of spec-
trum of electromagnetic waves propagated in the
periodic layered chiral media. Note that expres-
sions (20) are suitable for the determination of the
transmitted and reflected waves of the electromagnet-
ic field through the layered structure consisting of m
chiral layers. Moreover, the propagation matrix M
equals the product of the propagation matrices for
single chiral layers, (i =1...m):

M=M,M,_ .M, (25)
where M, are propagation matrices of single chiral
layers with thicknesses d; and constitutive parame-
ters &, 4;, k;. Here, in expressions (20) value
d=d, +d,_ +..+d, is the total thickness of all

layers. Matrix elements are calculated using for-
mulas (16) with the following substitutions:

ky > ky(\Jer), Zy, > Ju /e, d—>d;, k> k.

The rotation angle of the polarization plane
for the structure consisting of m chiral layers is de-

fined as a sum of the rotation angles of the polariza-
tion plane for each chiral layer as:
0 =—ky(xid, + K5d, +...+ k,,d,,). (26)
Thus, it is possible to calculate the effective
constitutive parameters and polarization characteris-
tics of layered chiral structure using the transmission
and reflection coefficients of electromagnetic waves
and with help of the technique described in [10].
For the periodic structure/medium consisting
of m unit cells, each of which contains two chiral
layers, the resulting propagation matrix is as follows:

M, =(MM, )", 27)
where M, and M, are propagation matrixes for
chiral layers of the unit cell.

We calculate the transmission (solid line)
and reflection coefficients (dashed line) of electro-
magnetic waves for a periodic structure consisting of
m=>5 unit cells (Fig.2). Let us assume that
dy=2.0 mm,d, =2.0 mm, g =5, 1 =1, xK,=0.2,
& =2, uy=1, kK, =0. As can be seen from Fig. 2,
there are 7 specific areas, corresponding to forbidden
bands for finite periodic structure under study on the
dependence T'(w).
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Fig. 2. Transmission and reflection coefficients of electromagnetic
waves for chiral periodic structure with 5 elementary cells

In order to determine the boundaries of for-
bidden bands in the transmission coefficient spec-
trum, it is necessary to solve the equation that relates
the tangential components of the amplitudes of the
electric and magnetic fields on the boundaries of the
unit cell of the infinite periodic structure (Floquet's
theorem [3, 11]):

My =y, (28)
where M =M,M, is the propagation matrix of the
periodic structure unit cell, y is the vector consist-

ing of the tangential components of the electric and

magnetic field, 4 is the eigenvalue of matrix M.
Transforming (28), we obtain:

M-y =0, (29)

where [ is the unit matrix.
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Calculating the determinant |M —I/”L|:O

and grouping the factors relative to A, we obtain an
equation of the fourth degree:

M ra P va, P rad+ay=0, (30)
where

ag=|M|=1, a,=ay =-2(M,; + My,),

ay = M{ + M, + M3 + M3, -

—2(M3M 3y — MM 3;) +4M 1 M 3.

Because of a; = a3, equation (30) can be written as a
product of two quadratic equations:

D+ @A+ DA+ gl + 1) =2 +(q +g) A +
+(q19, + )2+ (g1 +g,)A+1=0,

From (31) we find the relation between parameters
41> q, with parameters a;, a, [11,12] as:

€2))

2
R, 32
9,2 5 (2j 2- (32)

By solving equation (31), we obtain two pairs of
roots:

2
q1 q1

A, === =] -1,

P (zj

2
q; q
ha=—"=* || =] 1.
wm-Ls (L)

We group the solutions of equation (31) so that
h=Xy=e""  and Ay =4, =M
d=d,+d, is the thickness of the unit cell. Then we
have the following relations:

cos(ky, »d) = —%7’2, (34)

(33)

where

where &, and k,, are Bloch wave numbers [3].

Bloch wave numbers are real in the propaga-
tion band and complex numbers in the forbidden
band. Let us rewrite expression (34) as the following:

cos(ky, ,d) = cos((arccos D) 7 0), (35)

where
D = cos(konyd,)cos(kynyd,) —
(2] +23)/(22,Z,))sin(komd, )sin(konyd,),
0 =—ky(dx| +dyx5).
The expression for D determines the Bloch
wave number for the non-chiral layered periodic

structures with the same values of n =.&u,

Ny =+&tly, Zy=AJi/&, Zy=yp/e,. The ex-

pression for @ determines the rotation angle of the
polarization plane for the unit cell of layered periodic
chiral structure. When |D| > 1, the value of arccosD

becomes complex, which corresponds to the band

gap. When |D|S1, the value of arccosD is real.
At the same frequencies we have the allowed band.
Thus, the boundaries of the forbidden bands are de-
fined by the condition |D| =1. Note that this condi-

tion does not depend on the chirality parameter of the
layers in the structure under study.

We study the dependence of the boundaries
of the forbidden bands for chiral periodic structure as
function on d,/d ration for fixed d=4.0 mm

(Fig. 3). These boundaries are shown in Fig. 3, and
their positions are determined from the condition

|D| =1. The dashed areas correspond to the forbidden

bands of the chiral periodic structure.

T L T T \%
Forbidden bandsm

1.0

d/d

Fig. 3. Dependence of the forbidden bands areas on the parameter
d\/d for the chiral periodic structure for a fixed value of
d=4.0 mm

In Fig. 3 we show that at certain relations
between the parameters of the chiral layered periodic
structure, the width of the forbidden bands
becomes 0 [13]. This occurs when the thickness d; and
d, is an integer number of half wavelengths. In this
case we have the following conditions:
sin(kymd,;) =0,

. (36)
These conditions imply that:
koi’l]d] = mlﬂ-, (37)

k0n2d2 = mzﬂ',

where my,m, =1,2,3,... are positive integers.
Excluding the frequency from equations (37), we
find the following relation for thicknesses d; and d,:
a4 _ m o (38)
dy mym
The frequencies at which the forbidden
bands have zero widths are defined as follows:
cr(mn, + m,yn,)
my,m, = N

39
dnn, 39)

Thus, choosing the size and the refractive
indexes of the layers of the periodic chiral structure
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unit cell, we can control the frequencies with zero
width of band gaps.

Conclusions. The processes of the electro-
magnetic waves propagation in the layered chiral
media using the propagation matrix method were
studied. The coefficients of the propagation matrix
for the periodically layered chiral medium were ob-
tained. The transmission and reflection coefficients
of the electromagnetic waves in the structure consist-
ing of a finite number of planar chiral layers were
calculated.

The boundaries of the forbidden bands of
the periodic chiral medium whose unit cell consists
of two planar chiral layers were determined. It is
shown that these boundaries do not depend on the
chirality parameter of the layers within the structure.
It was found that for the certain values of chiral lay-
ers thicknesses the width of band gap becomes 0.

The studies presented above allow us to cal-
culate the effective constitutive parameters of layered
chiral media in order to design the artificial metama-
terials with predetermined features.

Authors are grateful to Prof. V. R. Tuz and
Dr. O. V. Kostylova for fruitful discussions.
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Pyxonuce nocmynuna 14.05.2014.
H. H. beneuxkuii, C. FO. ITonesoii, C. U. Tapanos

NCCJIEJOBAHUE CIIEKTPAJIBHBIX U
MNOJIAPU3ALIMOHHBIX XAPAKTEPUCTHK
CJIOUCTBIX KMPAJIbHBIX CPEJ

HccenenoBanue CIOUCTHIX KHPANBHBIX CpeJ MPEACTaB-
JIIeT UHTEpeC U JUIi (pyHIaMEHTAIIBHOM U Il IPUKIIAHOH (U3HKH.
Takue cpeasl MOTYT MPUMEHSATHCS 1 co3nanust CBY-ycTpoiicTs,
TaKHX KaK HOJIPH3aTOphl U GuiIbTpsl. HecMOTps Ha TO YTO CIIEKT-
pajibHbIe M HOJISIPH3ALIMOHHBIE XapPaKTEPHCTUKH CIOUCTBIX Cpell B
HACTOSIIEe BPEMs U3YYEHBI JOCTATOYHO XOPOIIO, CIOHCTHIE KH-
paibHbIE Cpebl H3yUeHHI elle HeqoctaTouHo. Hamu uccnenoBaHbl
CNEKTpaJIbHblE U MOJSPHU3ALUOHHBIE XAPAKTEPUCTHKU CIOHCTHIX
KHpaJIbHBIX CPeJl C MCIOIb30BAaHHEM METOJa MAaTPHUIl PacIpoCTpa-
HeHus. IlomydeHs! Kod((UIMEHTH MaTPUIBI PACHPOCTPAHEHUS
JUIS  CIIOUCTO-TIEPUOJMYECKON KHpalbHOW cpelbl. BbruncieHs!
K02 (GUIUEHTH TPOXOXKIACHUS U OTPAXKEHUsI TUHEHHO MOJIAPU30-
BaHHBIX JJICKTPOMATHUTHBIX BOJH I CTPYKTYPBI, COCTOSIIEH U3
IUIOCKUX KUPaJbHBIX coeB. OnpeneneHsl IpaHullbl 3alpeIeHHbIX
30H 71 IEPUOUYECKON Cpefbl, JJIeMEHTapHas siueiika KOTopoi
COCTOHT M3 JIByX Da3lIHYHBIX KHpaIbHBIX cioeB. [lokxazaHo, 4To
TPaHHULBI 3aMPEILEHHBIX 30H HE 3aBUCAT OT apaMeTpa KUpaJbHOC-
TH CJIO€B, BXOJAMUX B CTPYKTypy. Halineno, uTo mpu onpenenen-
HBIX 3HAUYCHHUSX TONIIUH CIOEB MIMPHHA 3alPEIIeHHbBIX 30H CTaHO-
BuTcst paBHOM 0. OTMEUEHO, YTO MPEUIOKEHHYI0 METOJMKY pac-
yera KOA(pQUIMEHTOB OTpPaKEHHS W TPOXOXKACHHUS MOXHO HC-
MONB30BaTh UL ompeneneHuss d(G(EeKTUBHBIX MaTepUATbHBIX
rapamMeTpoB UCKYCCTBEHHBIX KHPAJIbHBIX METaAMaTEPUAJIOB.

KiioueBble cj10Ba: MeTaMaTepHall, CJIOUCTas KHpaIbHast
CTPYKTypa, METOJ{ MaTPUILl PACIPOCTPAHEHUS.

M. M. Bineupkuii, C. YO. [Tonesoit, C. 1. Tapamos

AOCIIJUKEHHS CIIEKTPAJIbHUX
I TIOJIAPUBALIIMHUX XAPAKTEPUCTUK
ITAPYBATUX KIPAJIbBHUX CEPEJJOBUII]

JlocimipKeHHsT apyBaTHX KipalbHUX CEPEIOBHII IiKa-
Be JUIs (pyHAaMeHTalIbHOI 1 mpukianHoi ¢izuku. Taki cepenosuina
MOXYTb 3aCTOCOBYBaTHUCS /Ui cTBOpeHHss HBU-npucTpois, Takux
AK mosspu3atopy i ¢pinsTpu. He3Bakaroun Ha Te IO CHEKTpalIbHI
W moysipu3aniifHi XapaKTepUCTHKU INapyBaTHX CEpEelOBHII Ha
ChOTO/IHI BHBYEHI JOCHTH J00pe, MapyBati KipajibHi cepeaoBHUIla
BUBYCHI 16 HEJOCTaTHhO. Hamu HOCIPKEHO CreKTpaibHi i mo-
JSIpU3aniifHi XapaKTEePHCTUKH MapyBaTHX KipaJbHUX CEPETOBHUIL 3
BHKOPHCTAHHAM METOAY MaTpHIlb nommpenHs. Otpumano koedi-
Li€HTH MaTpPULi MOMIUPEHHS IS IIapyBaTO-IEePiOANIHOTO Kipaib-
HoOro cepenosuma. OO4YMCIEHO KOSQILIEHTH HPOXOIKEHHS Ta
BIZIOUTTSI JIIHIHHO MOJSIPU3OBAHUX ENEKTPOMATHITHUX XBHJIb IS
CTPYKTYpH, IO CKJIAJA€ThCS 3 IUIOCKHUX KipaJdbHUX Inapi. BusHa-
YeHO MeXi 3a00pOHEHHX 30H II1 HEepiOJHYHOTO CEepemOBHUINA,
eJIEeMEHTapHa KOMIpKa SIKOI CKJIAA€ThCs 3 BOX PI3HUX KipaJbHHX
mapiB. [TokazaHo, mo Mexi 3a00pOHEHHMX 30H HE 3aJeXaTh BiJ
rapameTpa KipaJIbHOCTI IIapiB, [0 BXOAATH B CTPYKTYpy. 3Haiie-
HO, 1[0 PH NIEBHUX 3HAYCHHSX TOBIIMH LIAPiB IIMPHHA 3a00pOHE-
HHX 30H cTae piBHOW 0. Bin3HadeHo, 1o 3anponoHoBaHy METOAN-
Ky PO3paxyHKy Koe(illieHTiB BIIOWTTS 1 NPOXODKEHHS MOXKHA
BHKOPHCTOBYBAaTH [IUIi BU3HA4YCHHS G(QEKTUBHMX MaTepialbHUX
rnapameTpiB IITYYHUX KipaIbHUX MeTamMaTepiaiiB.

KarouoBi cioBa: meramarepian, mapyBara KipajbHa
CTPYKTYpa, METOJ{ MaTPHUIlb HOLIUPEHHSL.



