РЕЖИМ АВТОКОЛЕБАНИЙ В РЕЗКИХ *Р-N* ПЕРЕХОДАХ С ПОСТОЯННЫМ ОБРАТНЫМ СМЕЩЕНИЕМ

К. А. Лукин, П. П. Максимов

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины, 12, ул. Ак. Проскуры, Харьков, 61085, Украина E-mail: Lndes@kharkov.com

Численными методами решены уравнения диффузионно-дрейфовой модели обратно смещенных *p-n* переходов. Исследован режим автоколебаний в резком *p-n* переходе с постоянным обратным смещением. Показано, что уравнения диффузионно-дрейфовой модели рассматриваемых *p-n* переходов являются уравнениями математической модели автоколебательной системы. Исследован механизм возникновения автоколебаний. Установлены факторы, влияющие на частоту, амплитуду и спектр автоколебаний. Определен диапазон частот обратно смещенных *p-n* переходов из различного материала. Ил. 9. Табл. 3. Библиогр.: 18 назв.

Ключевые слова: полупроводник, автоколебательная диффузионно-дрейфовая модель полупроводников, обратно смещенный *p-n* переход, ударная ионизация.

Одними из полупроводниковых приборов, использующих явление ударной ионизации, являются лавинно-пролетные диоды (ЛПЛ. ІМРАТТ-диоды) [1-3]. Как известно, генерация колебаний в ЛПД возникает при подаче на диод переменного напряжения [1-4]. В статическом режиме при напряжении большем пробивного ток через диод ограничивается пространственным зарядом основных носителей тока электронов и дырок, проходящих соответственно через р-и *п*-области обедненного слоя в *p-n* ЛПД или через *i*-область в *p-i-n* ЛПД [2]. Очевидно, что с развитием лавинного процесса растет заряд подвижных носителей и увеличивается его влияние на процесс ударной ионизации. В работе [1] отмечалось, что электронный объемный заряд, снижая напряженность электрического поля у катода, создает в диоде с полевой эмиссией своеобразный механизм внутренней отрицательной обратной связи. При некоторых условиях такая связь может оказаться достаточной, чтобы в диоде возникли автоколебания, вообще не нуждающиеся во внешнем добротном резонансном контуре. Однако объяснение приведенного факта до сих пор не найдено. Актуальность этой задачи обусловлена изучением возможности дальнейшего продвижения в область более высоких частот и создания терагерцовых (ТГц) генераторов на основе обратно смещенных *p-n* переходов с ударной ионизацией. К настоящему времени благодаря развитию технологии формирования активного элемента на кремниевой металлизированной мембране рабочий диапазон ІМРАТТ-диодов увеличен до 200-350 ГГц [5]. В работах [6-8] впервые численно исследована токовая неустойчивость в лавинном р-п переходе при постоянном напряжении на нем. Показано, что при определенных условиях в резких *р-п* переходах возбуждаются автоколебания при постоянном обратном смещении.

Целью настоящей работы является моделирование режима автоколебаний в германиевых, кремниевых и арсенид галлиевых p-n переходах с постоянным обратным смещением, исследование механизма возникновения автоколебаний и определение факторов, влияющих на частоту, амплитуду и спектр.

1. Постановка задачи. Одномерный обратно смещенный *р-п* переход приведен на рис. 1.

Рис. 1. Одномерная модель обратно смещенного *p-n* перехода с подвижными границами обедненной области (*U*<0)

На резкий *p-n* переход подано обратное смещение, превышающее напряжение пробоя перехода U/U_{av} . Расчет этого смещения выполнен в соответствии с методикой работы [9]. В качестве математической модели обратно смещенных *p-n* переходов используем уравнения диффузионно-дрейфовой модели (ДДМ) [2, 3, 10]

$$\frac{\partial E}{\partial x} = \frac{q}{\varepsilon_0} (p+n+N); \quad \frac{\partial \varphi(x,t)}{\partial x} = -E(x,t); \quad (1)$$

$$\frac{\partial n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} + \alpha_n J_n + \alpha_p J_p - R(n, p); \qquad (2)$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} + \alpha_n J_n + \alpha_p J_p - R(n, p); \quad (3)$$

$$J_{n} = qn\mu_{n}E + qD_{n}\frac{\partial n}{\partial x}, J_{cM} = \mathcal{E}_{0}\frac{\partial E}{\partial t}, \left\{; \quad (4)\right\}$$

$$J(t) = J_n(x,t) + J_p(x,t) + J_{cM}(x,t), \qquad (5)$$

где *E* – напряженность электрического поля; *Ф*-электрический J – плотность потенциал; полного тока; J_n – плотность электронного тока; J_p – плотность дырочного тока; J_{cm} – плотность тока смещения; *n* – концентрация электронов в зоне проводимости; р-концентрация дырок в валентной зоне; q-абсолютное значение заряда электрона; ε_0 – диэлектрическая проницаемость полупроводника; \mathcal{E}_0 – диэлектрическая проницаемость вакуума; $N(x) = \begin{cases} -N_a, x_1 \le x < x_2; \\ N_d, x_2 < x \le x_3 \end{cases}$

распределение примесных атомов в *p-n* переходе; N_a, N_d - концентрация примесных акцепторов и доноров соответственно; R(n, p) – скорость рекомбинации электронов и дырок [4]; $\alpha_{n,p}(E) = A_{n,p} \exp \left| -\left(\frac{b_{n,p}}{E}\right)^{m_{n,p}} \right|$ коэффици-

енты ударной ионизации электронов и дырок соответственно [11]; D_n, D_p - коэффициенты диффузии электронов и дырок, которые связаны с подвижностями μ_n, μ_p соотношениями Эйнштейна $\mu_n = D_n / \varphi_0; \ \mu_p = D_p / \varphi_0; \ \varphi_0 = kT / q;$ *Т*-абсолютная температура; *k*-постоянная Больцмана; w_p, w_n – координаты обедненных *p*и *п*-областей *р*-*п* перехода.

Уравнения ДДМ дополняются граничными условиями

$$E(w_{p},t) = 0, E(w_{n},t) = 0,$$

$$\varphi(w_{p},t) = V(t), \varphi(w_{n},t) = 0,$$

$$J_{p}(w_{p},t) = J(t) - J_{ns}(w_{p},t),$$

$$J_{n}(w_{n},t) = J(t) - J_{ps}(w_{n},t)$$
(6)

$$\boldsymbol{J}_n(\boldsymbol{W}_n, \boldsymbol{l}) = \boldsymbol{J}(\boldsymbol{l}) - \boldsymbol{J}_{ps}(\boldsymbol{W}_n, \boldsymbol{l})$$

начальным условием

$$J(w_n, t = 0) = J_{ns} + J_{ps}$$
(7)

и условиями непрерывности электрического поля и потенциала на границе раздела *p*-и *n*-областей

$$\left. \begin{array}{c} E(x,t) \Big|_{x=x_{2}=0} = E(x,t) \Big|_{x=x_{2}=0} \\ \varphi(x,t) \Big|_{x=x_{2}=0} = \varphi(x,t) \Big|_{x=x_{2}=0} \end{array} \right\}, \tag{8}$$

где J_{ns} , J_{ps} – плотность электронного и дырочного токов тепловой генерации соответственно; $V(t) = -\int_{w_n}^{w_n} E(x,t) dx$ – падение напряжения на *р-п* переходе.

Уравнения ДДМ при численном решении преобразовывались в безразмерные уравнения следующим образом: $E' = E / E_0; \quad \varphi' = \varphi / \varphi_0;$ $n' = n/n_i; \quad p' = p/n_i; \quad N' = N/n_i; \quad x' = x/L_0;$ $t' = t / t_0;$ $J'_{p} = J_{p} / J_{0}; \qquad J'_{n} = J_{n} / J_{0};$ $J'_{\rm cM} = J_{\rm cM} / J_0; \quad D'_p = D_p / D_0; \quad D'_n = D_n / D_0.$ Ocновные нормировочные коэффициенты равны: $E_0 = \varphi_0 / L_0$, B/M; $D_0 = 1$, M²/c; $\varphi_0 = kT / q$, B; $L_0 = \sqrt{\varepsilon \varepsilon_0 \varphi_0 / q n_i}$, m; $J_0 = q n_i D_0 / L_0$, A / M^2 ; $t_0 = L_0^2 / D_0$, c.

Алгоритм решения уравнений ДДМ использует модифицированный метод встречных прогонок [12], схему бегущего счета [13], метод расчета полупроводниковых структур с резкими р-п переходами [14] и разностный метод расчета лавинных *p-n* переходов в режиме автогенерации [15]. При решении уравнений ДДМ диффузионный ток не учитывается, так как он существенно меньше дрейфового тока [2, 14]. Шаг на временной сетке τ и шаг на пространственной сетке h $\tau \leq h/v$ удовлетворяют условию Куранта (v-скорость носителей тока). Погрешность аппроксимации дифференциальных операторов разностными не превышает $O(\tau + h)$ [13].

2. Коэффициенты ударной ионизации и напряжение лавинного пробоя. В полупроводниках при сильных электрических полях происходит ударная ионизация, инициируемая электронами или дырками и характеризуемая числом генерированных электронно-дырочных пар в единицу времени на единичной длине. На рис. 2 представлены графики зависимости отношения коэффициентов ударной ионизации $K(E) = \alpha_n(E) / \alpha_n(E)$ от электрического поля, построенные по формулам экспоненциальной зависимости коэффициентов ударной ионизации электронов и дырок [11].

Рис. 2. Зависимость отношения коэффициентов ударной ионизации k(E) от электрического поля E полупроводников из различного материала

Пунктирными линиями отмечен интервал значений электрического поля, в котором аппроксимация коэффициентов ударной ионизации аналитическим выражением с графической точностью совпадает с экспериментальными данными [3, 11].

Одним из основных параметров *p-n* переходов является напряжение лавинного пробоя U_{av} . На рис. 3 приведены результаты графики численного расчета и аналитической зависимости U_{av} , построенная с помощью выражения [3, 16].

$$U_{av}(N_b) = 60 \, (f_g / 1, 1)^{3/2} \, (f_b / 10^{16})^{-\gamma_2}, \quad (9)$$

где $\gamma_2 = 0,69$; E_g – ширина запрещенной зоны; N_b – концентрация основных носителей заряда. Видно, что в интервале значений 10÷100 В расчет напряжения пробоя GaAs *p-n* перехода по формуле (9) (кривая 1) практически совпадает с численным расчетом U_{av} симметричного *p-n* перехода (кривая 2). В случае несимметричного *p-n* перехода численный расчет U_{av} (кривая 3) значительно отличается от расчета по формуле (9).

Рис. 3. Зависимость напряжения пробоя GaAs *p-n* перехода от концентрации примесных атомов (кривая 1 – аналитическая аппроксимация по формуле (9), 2 – численный расчет симметричного *p-n* перехода $N_a = N_d$, 3 – численный расчет несимметричного *p-n* перехода $N_a = 0, N_d$)

3. Режим автоколебаний. Характерные автоколебания плотности электронного тока Si *p*-*n* перехода представлены на рис. 4.

Рис. 4. Плотность электронного тока обратно смещенного Si p-n перехода как функция времени и координаты ($U/U_{av} = 1,75$)

Видно, что вдоль оси x/h в слое умножения p-n перехода амплитуда плотности тока J_n увеличивается вследствие лавинно-каскадного умножения носителей и модулируется во времени. Амплитуда автоколебаний с течением времени насыщается.

Электрическое поле и плотность электронного тока изменяются с периодом T (рис. 5). Ток запаздывает относительно поля на величину t_d (рис. 5,а). Наличие запаздывания обусловлено инерционностью ударной ионизации в слое умножения *p-n* перехода и конечностью времени пробега носителями заряда через этот слой. Из рисунка видно, что частота зависит от концентрации примесных атомов. При изменении N_a от 10^{16} до $5 \cdot 10^{16}$ см⁻³ частота увеличилась от 114 до 315 ГГц (за счет увеличения заряда подвижных носителей).

Рис. 5. Зависимости электрического поля E(x) (кривая 1) и плотности электронного тока $J_n(x)$ (кривая 2) *Si p-n* перехода от времени при различных концентрациях примесных атомов: a) - $N_a/N_d = 0.1$; б) - $N_a/N_d = 0.5$; $(U/U_{av} = 1.15; N_d = 5 \cdot 10^{17} \text{ cm}^{-3})$

Размеры обедненной области p-n перехода определяются из уравнения Пуассона (1). Так как лавинный ток изменяется со временем (см. рис. 5), то его заряд также изменяется со временем. Поэтому от времени зависит и ширина обедненной области Si p-n перехода w(t). Для решения уравнений ДДМ в области с подвижными границами применен метод, учитывающий эту особенность задачи [15].

Из рис. 6 видно, что в Si *p-n* переходе в режиме автоколебаний происходит модуляция ширины обедненной области. С течением времени амплитуда колебаний насыщается. Величина и время насыщения амплитуды зависят от напряжения пробоя *p-n* перехода и величины обратного смещения.

Рис. 6. Модуляция ширины обедненной области w(t) Si p-n перехода в режиме автоколебаний

4. Механизм возбуждения автоколебаний. На рис. 7 приведены распределения электрического поля, коэффициентов ударной ионизации и плотностей электронного и дырочного токов в обедненной области Si p-n перехода в эквидистантных моментах времени одного периода колебаний. Из рис. 7, а-в видно, что в обедненной области *p-n* перехода в моменты времени $t_2 \div t_6$ электрическое поле и коэффициенты ударной ионизации снижаются (кривые 2-6), а в моменты времени $t_7 \div t_{10}$ они растут (кривые 7-10). Из рис. 7, г следует, что в слое умножения *p-n* перехода в моменты времени $t_2 + t_d \div t_6 + t_d$ плотности электронного и дырочного токов растут (кривые 2-6), а в моменты времени $t_7 + t_d \div t_{10} + t_d$ они снижаются (кривые 7-10). Сравнение рис. 7, а и рис. 7, б, в показывает, что слой умножения составляет значительную часть обедненного слоя *p-n* перехода. Коэффициенты ударной ионизации за один период колебаний изменяются от максимальных значений, при которых слой умножения и интенсивность генерации электроннодырочных пар максимальна (кривые 1, 10), до минимальных, при которых лавина практически гаснет (кривые 5, 6). В результате возникает модуляция плотности токов.

Рис. 7. Распределения электрического поля $E(x, t_i)$, коэффициентов ударной ионизации электронов и дырок $\alpha_p(x,t_i)$, $\alpha_n(x,t_i)$ и плотностей электронного и дырочного токов $J_p(x,t_i)$, $J_n(x,t_i)$ в обедненной области обратно смещенного Si *p-n* перехода $(U/U_{av}=1,75)$

Таким образом, существование режима автоколебаний в обратно смещенных *p-n* переходах с постоянным обратным смещением дает основание считать, что уравнения ДДМ являются уравнениями математической модели автоколебательной системы. **5.** Диапазон частот и спектр мощности. На рис. 8 приведена зависимость частоты f обратно смещенных p-n переходов от средней ширины обедненного слоя \overline{w} , определяемой концентрацией примесных атомов. Видно, что частота растет с уменьшением средней ширины обедненного слоя \overline{w} [6-8]. Из рисунка следует, что резкие Ge, Si и GaAs p-n переходы с постоянным обратным смещением генерируют во всем CBЧ диапазоне.

Рис. 8. Частота обратно смещенных *p-n* переходов в режиме автоколебаний как функция средней ширины обедненного слоя \overline{w} : 1 - Si *p-n* переход; 2 - GaAs *p-n* переход; 3 - Ge *p-n* переход (точки - расчетные значения; пунктирные - аналитическая аппроксимация частоты)

Частота может быть аппроксимирована аналитическим выражением

$$\vec{f} = (v_{ns} + v_{ps}) 2\delta_{eff}, \qquad (1)$$

где $\delta_{eff} = \overline{w} \delta_s$ [6, 7]. Величина δ_s зависит от материала полупроводника, и для Si, Ge и GaAs *p-n* переходов она равна соответственно $\delta_s = 0.67$; 0.63 и 0.865 (*T*=300 K).

Таким образом, частота *p-n* переходов является пролетной и определяется основными параметрами полупроводника – средней шириной обедненного слоя, шириной запрещенной зоны, скоростью насыщения носителей заряда и коэффициентами ударной ионизации электронов и дырок [17]. Для сравнения отметим, что частота ЛПД определяется отношением скорости насыщения электронов v_{ns} к удвоенной длине пролетного участка L и аппроксимируется выражением $f_{ATD} = v_{ns}/2L$ [18]. Качественно обе аппроксимации частот совпадают. Количественно частота f, определяемая по формуле (10), выше частоты f_{ATD} , так как их отношение $f/f_{ATD} = (+v_{ps}/v_{ns})L/\delta_{eff} > 1$.

Основные параметры Si, Ge и GaAs *p-n* переходов в режиме автоколебаний представлены в табл. 1-3. Концентрация доноров равна $N_d = 0.5N_a$. Согласно табл. 1-3 плотность тока нелинейно растет с увеличением частоты. Это

качественно согласуется с результатами работы [2], в которой показано, что ток, необходимый для возбуждения колебаний, растет быстрее, чем квадрат частоты.

Таблица 1 Параметры Si *p-n* перехода в режиме генерации

f_{Si} , ГГц	$N_a, { m cm}^{-3}$	$-U_{av}$, B	J_m/J_0	\overline{W} , MKM
96	$8 \cdot 10^{16}$	23,5	1,3	1,593
131	$12 \cdot 10^{16}$	16,2	0,9	1,043
158	$16 \cdot 10^{16}$	14,67	0,89	0,903
184	20.10^{16}	12,6	0,96	0,765
210	$24 \cdot 10^{16}$	11,2	1	0,671
238	$28 \cdot 10^{16}$	10,1	0,95	0,604
267	$32 \cdot 10^{16}$	9,2	0,98	0,554
296	36·10 ¹⁶	8,5	0,98	0,513
321	40.10^{16}	7,56	0,96	0,474
347	$44 \cdot 10^{16}$	7,47	0,92	0,44
370	$48 \cdot 10^{16}$	7,05	0,89	0,41
389	$52 \cdot 10^{16}$	6,67	0,92	0,385
418	60·10 ¹⁶	6,07	1,35	0,351

Таблица 2

Параметры Ge <i>p-n</i> перехода в режиме генера
--

$f_{\rm Ge}$ ГГц	N_a , см ⁻³	$-U_{av}, \mathbf{B}$	J_m/J_0	\overline{w} , MKM
48	$6 \cdot 10^{16}$	15,6	0,83	1,527
74	10.10^{16}	10,7	0,81	1,01
98	$14 \cdot 10^{16}$	8,37	0,81	0,772
120	$18 \cdot 10^{16}$	6,97	0,82	0,635
141	$22 \cdot 10^{16}$	6,02	0,82	0,546
160	$26 \cdot 10^{16}$	5,32	0,83	0,483
179	30·10 ¹⁶	4,79	0,84	0,435
198	$34 \cdot 10^{16}$	4,37	0,85	0,398
216	38·10 ¹⁶	4,02	0,87	0,369
233	$42 \cdot 10^{16}$	3,74	0,88	0,345
249	46·10 ¹⁶	3,49	0,88	0,325
265	50.10^{16}	3,28	0,65	0,309
284	55·10 ¹⁶	3,05	0,91	0,292
304	60.10^{16}	2,83	0,94	0,277

Форма автоколебаний определяется напряжением на *p-n* переходе. Максимальная величина обратного смещения на GaAs *p-n* переходе ограничена значением, при котором заряд подвижных носителей превышает заряд примесных атомов. В рассматриваемом GaAs *p-n* переходе такое ограничение наступает при $U/U_{av} > 2,15$. В этом случае происходит смена знака суммарного заряда и обратно смещенный *p-n* переход переключается в прямом направлении. С уменьшением обратного смещения лавинный ток уменьшается и его заряд становится недостаточным для нейтрализации объемного заряда примесных атомов. В рассматриваемом случае GaAs *p-n* переход не возбуждается при $U/U_{av} < 1,65$.

Таблица 3 Параметры GaAs *p-n* перехода в режиме генерации

К. А. Лукин, П. П. Максимов / Рез	ким автоколебаний в резких p-n переходах
-----------------------------------	--

$f_{\rm GaAs}$, ГГц	N_a , см ⁻³	$-U_{av}, \mathbf{B}$	J_m/J_0	\overline{w} , MKM
91	10.10^{16}	23,3	1,17	1,38
145	20.10^{16}	14,65	1,04	0,803
192	30.10^{16}	11,35	1	0,595
223	$38 \cdot 10^{16}$	9,85	0,96	0,506
247	$44 \cdot 10^{16}$	9,05	1	0,467
259	$48 \cdot 10^{16}$	8,61	0,94	0,433
274	$52 \cdot 10^{16}$	8,23	0,97	0,41
284	56·10 ¹⁶	7,9	0,92	0,392
297	60.10^{16}	7,62	0,95	0,379
311	$64 \cdot 10^{16}$	7,36	0,91	0,364
321	$68 \cdot 10^{16}$	7,13	0,9	0,345
330	$72 \cdot 10^{16}$	6,93	0,94	0,339
341	$76 \cdot 10^{16}$	6,74	0,9	0,325
353	80·10 ¹⁶	6,57	0,88	0,31
416	100.10^{16}	5,9	0,6	0,264

Из рис. 9 видно, что автоколебания плотности тока содержат гармоники, частота которых приближается к терагерцовому диапазону ($f_{\rm I} = 369 \,\Gamma\Gamma\Pi$; $f_{\rm II} = 762 \,\Gamma\Gamma\Pi$; $f_{\rm III} = 1,13 \,\Gamma\Gamma\Pi$; $f_{\rm IV} = 1,5 \,\Gamma\Gamma\Pi$). Амплитуда гармоник падает с ростом номера гармоник и растет с увеличением величины обратного смещения на переходе.

Рис. 9. Спектр $S(\omega)$ автоколебаний плотности тока GaAs *p-n* перехода при различных значениях постоянного обратного смещения U/U_{av} (кривая 1 - U/U_{av} =2,15; 2 - U/U_{av} =1,75; 3 - U/U_{av} =1,65)

Выводы. Частота автоколебаний Ge, Si и GaAs *p-n* переходов изменяется во всем CBЧ диапазоне. Она является пролетной и определяется отношением средней скорости насыщения электронов и дырок к эффективной ширине слоя умножения. Частота высших гармоник достигает терагерцовый диапазон.

Амплитуда автоколебаний зависит от концентрации примесных атомов и величины обратного смещения *p-n* перехода. Ее величина ограничена зарядом подвижных носителей. Спектр автоколебаний определяется напряжением на *p-n* переходе.

Наличие режима автоколебаний позволяет считать, что уравнения диффузионнодрейфовой модели обратно смещенных *p-n* переходов являются уравнениями автоколебательной системы.

Таким образом, резкие Ge, Si и GaAs *p-n* переходы с постоянным обратным смещением являются генераторами СВЧ и терагерцовых (на второй гармонике) диапазонов.

- Тагер А. С. Лавинно-пролетный диод и его применение в технике СВЧ // Успехи физ. наук. - 1966. - <u>90</u>, № 4. -С. 631-666.
- Тагер А. С., Вальд-Перлов В. М. Лавинно-пролетные диоды и их применение в технике СВЧ. - М.: Сов. радио, 1968. - 480 с.
- Зи С. Физика полупроводниковых приборов. Т. 1, 2. М.: Мир, 1984. - 456 с.
- Лавинно-пролетные диоды. <u>http://radiotexnik.info/</u> poly_sp_1.php; Диоды. <u>http://dssp.petrsu.ru/html/2005/belova/</u> index.htm.
- Болтовец Н. С., Иванов В. Н., Беляев А. Е. и др. Контакты с диффузионными барьерами на основе внедрения ТiN, Ti(Zr)B_x в СВЧ диодах диапазона 200-350 ГГц // Физика и техника полупроводников. - 2006. - <u>40</u>, вып. 6. - С. 753-757. <u>http://ckp.rinno.ru/elphys/ Article 1.pdf</u>
- Lukin K. A., Cerdeira H. A. and Maksymov P. P. Selfoscillations in reverse biased p-n junction with current injection // Appl. Phys. Lett. - 2003. - 83, No. 20. - P. 4643-4645.
- Lukin K. A., Cerdeira H. A. and Maksymov P. P. Terahertz self-oscillations in avalanche p-n junction with DC current injection. MSMW'07 Symposium Proceeding. Kharkov. Ukraine. June 25-30 - 2007. - 1, - P. 204-206
- Lukin K. A., Cerdeira H. A. and Maksymov P. P. Terahertz self-oscillations in reverse-biased p-n junction // MSMW'07 Symposium Proceeding. Kharkov. Ukraine. June 25-30 -2007. -<u>1</u>, - P. 201-203.
- 9. Лукин К. А., Максимов П. П. Статические электрические поля в обратно смещенных *pn-i-pn* структурах // Радиофизика и электроника. Харьков: Ин-т радиофизики и электрон. НАН Украины. 2002. 7. № 2. С. 317-322.
- Гершанов В. Ю., Гармашов С. И. Методические указания. «Методы и алгоритмы структурно-физического моделирования элементов интегральных схем в диффузионнодрейфовом приближении». Часть II. - Ростов н/Д: УПЛ РГУ, 2000. - 18 с. <u>http://window.edu.ru/window_catalog/files/</u> r20168/rsu473.pdf.
- Керрол Дж. СВЧ-генераторы на горячих электронах. М.: Мир, 1972. - 384 с.
- Лукин К. А., Максимов П. П. Модифицированный метод встречных прогонок // Радиофизика и электроника. -Харьков: Ин-т радиофизики и электрон. НАН Украины. -1999. - <u>4</u>, № 1. - С. 83-86.
- Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. - М.: Наука, 1980. - 352 с.
- 14. Лукин К. А., Максимов П. П. Метод расчета полупроводниковых структур с резкими *p-n* переходами // Радиофизика и электроника. - Харьков: Ин-т радиофизики и электрон. НАН Украины. - 1999. - <u>4</u>, № 1. - С. 87-92.
- *Лукин К. А., Максимов П. П.* Метод расчета лавинных *p-n* переходов в режиме автогенерации // Радиофизика и электроника. - Харьков: Ин-т радиофизики и электрон. НАН Украины. - 2005. - <u>10</u>, № 1. - С. 109-115.
- Полупроводниковые фотоэлектропреобразователи для ультрафиолетовой области спектра. <u>http://www.rfbr.ru/ pics/14890ref/file.pdf</u>
- Маделунг О. Физика полупроводниковых соединений элементов III и V групп. - М.: Мир, 1967. - 479 с.
- Физическая энциклопедия. Т. 2. М.: Сов. энциклопедия. 1990. - 770 с.

REGIME OF SELF-OSCILLATIONS IN ABRUPT *P-N* JUNCTIONS WITH THE CONSTANT REVERSED BIAS

K. A. Lukin, P. P. Maksymov

Equalizations of diffusive-drifting model of the reversebiased p-n junctions are decided by numeral methods. The regime of self-oscillations in abrupt p-n junctions with the constant reverse-biased is explored. It is shown that equalizations of diffusive-drifting model of the considered p-n junctions are equalizations of mathematical model of the self-oscillation system. The mechanism of origin of self-oscillations is explored. Factors, influencing on frequency, amplitude and spectrum of selfoscillations, are set. The range of frequencies of the reverse-biased p-n junctions from different material is determined.

Key words: semiconductor, self-oscillation diffusivedrifting model, reverse-biased *p-n* junction, impact ionization.

РЕЖИМ АВТОКОЛИВАНЬ В РІЗКИХ *Р-N* ПЕРЕХОДАХ З ПОСТІЙНИМ ЗВОРОТНИМ ЗМІЩЕННЯМ

К. О. Лукін, П. П. Максимов

Чисельними методами вирішені рівняння дифузійнодрейфової моделі зворотно зміщених *p-n* переходів. Досліджено режим автоколивань в різких *p-n* переходах з постійним зворотним зміщенням. Показано, що рівняння дифузійнодрейфової моделі даних *p-n* переходів є рівняннями математичної моделі автоколивальної системи. Досліджено механізм виникнення автоколивань. Встановлені чинники, що впливають на частоту, амплітуду і спектр автоколивань. Визначено діапазон частот автоколивань в зворотно зміщених *p-n* перехідах з різного матеріалу.

Ключові слова: напівпровідник, автоколивальна дифузійно-дрейфова модель, зворотно зміщений *p-n* перехід, ударна іонізація.

Рукопись поступила 4 февраля 2008 г.