Н.Е. Лебедев

Анализ и аппроксимации углового хода коэффициентов отражения воды и нефти

Дана оценка влияния вариаций реальной и мнимой частей коэффициентов преломления воды и нефти на их коэффициенты отражения. Представлена простая однопараметрическая аппроксимация френелевских коэффициентов отражения воды и нефти в интервале длин волн 0,4 – 13 мкм, более точная в сравнении с известными.

Ключевые слова: вода, нефть, коэффициенты преломления, поглощения, отражения, угловой ход, аппроксимация.

Введение. Для расчета отражения энергии электромагнитного излучения длиной волны λ , падающего на взволнованную водную поверхность, необходимо знание углового хода ее коэффициента отражения $\rho_{\lambda}(\omega)$, где ω – угол между нормалью к поверхности и направлением падающего (отраженного) излучения. Величина $\rho_{\lambda}(\omega)$ определяется по формулам Френеля. Для неполяризованного излучения

$$\rho_{\lambda}(\omega) = \frac{1}{2} \left[\left| \frac{N_{\lambda}^{2} \cos(\omega) - \sqrt{N_{\lambda}^{2} - \sin(\omega)^{2}}}{N_{\lambda}^{2} \cos(\omega) + \sqrt{N_{\lambda}^{2} - \sin(\omega)^{2}}} \right|^{2} + \left| \frac{\cos(\omega) - \sqrt{N_{\lambda}^{2} - \sin(\omega)^{2}}}{\cos(\omega) + \sqrt{N_{\lambda}^{2} - \sin(\omega)^{2}}} \right|^{2} \right], \quad (1)$$

где $N_{\lambda} = n_{\lambda} - i\kappa_{\lambda}$, n_{λ} – реальная, κ_{λ} (характеризующая затухание) – мнимая части комплексного коэффициента преломления воды; индекс λ для краткости по возможности будем опускать.

Для учета взволнованности водной поверхности требуется проведение интегрирования $\rho(\omega)$. Громоздкий характер выражения (1) удлиняет время расчета и затрудняет понимание углового хода $\rho(\omega)$. При использовании в расчетах величины $d\rho(\omega)/d\omega$ дифференцирование (1) дает еще более громоздкое и менее наглядное выражение.

Необходимость разрешения этих вопросов приводит к задаче нахождения простого аппроксимационного выражения $\rho_a(\omega)$, близкого к $\rho(\omega)$ для всех возможных $\omega = 0 - 90^\circ$.

Известные аппроксимации для $\rho(\omega)$, их общий вид и предлагаемая аппроксимация. В литературе известны две аппроксимации излучательной способности $\varepsilon_a(\omega) = 1 - \rho_a(\omega)$:

$$\varepsilon_{a1}(\omega) = 0.98\{1 - [1 - \cos(\omega)]^5\}$$
для $\lambda = 8 - 12$ мкм [1], (2)

$$\varepsilon_{a2}(\omega) = \varepsilon_0 \left[1 - \operatorname{tg}(\omega/2)^m\right]$$
для $\lambda = 10 - 12$ мкм [2] (3)

© Н.Е. Лебедев, 2014

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

и одна для $\rho_a(\omega)$ в видимом диапазоне [3], используемая в компьютерном моделировании отражения видимого света от водной поверхности; по сути, она эквивалентна аппроксимации (2):

$$\rho_{a}(\omega) = \rho_{0} + (1 - \rho_{0}) \left[1 - \cos(\omega)\right]^{5}, \tag{4}$$

где $\varepsilon_{a}(\omega)$ – аппроксимация излучательной способности воды под углом ω , $\varepsilon_{0} = 1 - \rho_{0}$, ρ_{0} – френелевский коэффициент отражения для нулевого вертикального угла:

$$\rho_0 \equiv \rho(0) = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = \frac{(n-1)^2}{(n+1)^2} + \frac{4n}{(n+1)^2} \frac{\kappa^2/(n+1)^2}{1 + \kappa^2/(n+1)^2}.$$
(5)

Выражения (2) – (4) являются частными случаями однопараметрической аппроксимации вида

$$\rho_{a}(\omega, m) = \rho_{0} + (1 - \rho_{0})F(\omega, m),$$
(6)

где $F(\omega, m)$ – возрастающая аппроксимационная функция, m – параметр аппроксимации, причем F(0, m) = 0, $F(90^\circ, m) = 1$.

Аппроксимационные функции $F(\omega, m)$ выражений (2), (4) и (3) имеют соответственно вид

$$F_1(\omega, m_1) = [1 - \cos(\omega)]^{m_1},$$
(7)

$$F_2(\omega, m_2) = tg(\omega/2)^{m_2}$$
. (8)

Рассмотрим также аппроксимацию $F_3(\omega, m_3)$ вида

$$F_3(\omega, m_3) = [\exp(m_3\omega) - 1] / [\exp(m_3 \cdot \pi/2) - 1].$$
(9)

Параметры аппроксимационных функций m_i (i = 1 - 3) определяются методом наименьших квадратов разностей $\rho(\omega_j) - \rho_{ai}(\omega_j, m_i)$ для $\omega_j = 0(1) - 90^\circ$ при фиксированных λ .

Слагаемые комплексного коэффициента преломления воды, их анализ и аппроксимации $\rho_{ai}(\omega)$. Наиболее длинные ряды и последние по времени публикации необходимых для расчета $\rho(\omega)$ величин *n* и κ пресной воды представлены в статье [4] для интервала $\lambda = 0,2 - 200$ мкм и температуры 25°C и в работе [5] (0,01 – 10⁷ мкм, 20°C).

Слагаемые выражения (1) описывают отражение энергии линейно поляризованных электромагнитных волн: первое – для вектора электрического поля в плоскости падения, оно убывает от ρ_0 до 0 с ростом ω от 0 до $\omega_{\rm B}$ = = arctg(*n*) и затем возрастает до 1; второе – для вектора электрического поля, ортогонального первому, оно возрастает с ростом ω от ρ_0 до 1. Аппроксимация (6) правомерна, если рост второго слагаемого всегда больше, чем понижение первого. Это имеет место всюду при n < 3,4 и $\kappa < 1$, что, по данным работы [5], выполняется для всех $\lambda < 2000$ мкм. В связи с тем, что для дистанционного зондирования океана при таких λ рабочим диапазоном электромагнитных волн является 0,4 – 13 мкм, то его пределами мы и ограничимся.

На рис. 1, *а* представлены *n* и κ из работ [4, 5]; на рис. 1, δ – соответствующие величины ρ_0 и $d\rho = |\rho_0[4] - \rho_0[5]|$ (которая характеризует погрешность *ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3* 13 знания ρ_0 вследствие ошибок определения *n* и κ), а также $z_0 = a^{-1}$, где $a \equiv 4\pi\kappa/\lambda$ – коэффициент поглощения излучения. Величина z_0 суть расстояние, соответствующее ослаблению прошедшего в глубину излучения в *e* раз; для интервала 10 – 12 мкм z_0 также характеризует толщину приповерхностно-го слоя океана, формирующего его восходящее тепловое излучение.

Р и с. 1. Параметры *n* и к воды по данным работ [4] (линии) и [5] (точки) (*a*), а также соответствующие величины ρ_0 , $d\rho$, z_0 (δ) в интервале $\lambda = 0, 4 - 13$ мкм

Минимальные среднеквадратические отклонения

$$\sigma \rho_i = \sqrt{\frac{1}{90} \sum_{j=0}^{90} [\rho(\omega_j) - \rho_{ai}(\omega_j, m_i)]^2}$$
(10)

(i = 1 - 3) для функций $F_i(\omega, m_i)$ вида (7) - (9) в зависимости от λ показаны на рис. 2, *а*. Как видно, наименьшие величины $\sigma \rho_i$ достигаются при выборе функций F_3 для $\lambda < 11,8$ мкм и F_2 для $\lambda > 11,8$ мкм.

Р и с. 2. Минимальные среднеквадратические отклонения $\sigma \rho_i$ (10) для аппроксимационных функций $F_i(\omega, m_i)$, i = 1 - 6 (*a*), а также минимизирующие параметры m_1 , m_2 , m_3 и ρ_0 (*b*) в интервале $\lambda = 0, 4 - 13$ мкм (ось абсциес до 8 мкм – логарифмическая, после – линейная)

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

Рассматривались также следующие аппроксимационные функции:

$$F_4(\omega, m_4) = [\sec(\omega/2)^{m_4} - 1] / (2^{0.5m_4} - 1),$$

$$F_5(\omega, m_5) = [(2/\pi) \arcsin(2\omega/\pi)]^{m_5},$$

$$F_6(\omega, m_6) = [\operatorname{arctgh}(\omega/\pi) / \operatorname{arctgh}(0.5)]^{m_6}$$

и варианты с их перемножением; все они оказались грубее, чем F_2 , F_3 . Так, средние величины отношений $\sigma \rho_i / \sigma \rho_3$ в видимом диапазоне 0,4 – 0,7 мкм для i = 1, 2, 4, 5, 6 равны соответственно 9; 2,2; 4,8; 26; 4. Величины m_1, m_2, m_3 , минимизирующие соответствующие $\sigma \rho_i$, а также ρ_0 показаны на рис. 2, δ .

Как видно, величина m_1 , минимизирующая $\sigma\rho_1$, отлична от значения 5, принятого в статьях [1, 3] (см. (2), (4)). При этом $\rho_{a1}(\omega, 5)$ в среднем по ω грубее, чем $\rho_{a1}(\omega, m_1)$, в интервалах $\lambda = 0,4 - 0,8$ мкм — в 1,7 раза, 3,3 – 4 мкм — в 2,6 раза, 8 – 12 мкм — в 4 раза.

Характеризующие близость аппроксимации к истинному значению разности $\delta \rho_i(\omega) = \rho_{ai}(\omega, m_i) - \rho(\omega)$ (i = 1 - 3), наряду с $\rho(\omega)$, для $\lambda = 0,5$ и 12 мкм показаны на рис. 3. Видно, что величины $\delta \rho_i(\omega)$ практически инвариантны для $\lambda = 0,4 - 11$ мкм. В этом интервале λ аппроксимация по F_1 оказалась самой грубой; аппроксимация F_2 точнее, чем F_3 , для $\omega = 0 - 25^{\circ}$ и, наоборот, F_3 точнее, чем F_2 , для $\omega = 25 - 90^{\circ}$. В среднем же для $\omega = 0 - 90^{\circ}$ аппроксимация F_3 примерно в 2 раза точнее, чем F_2 ; в диапазоне $\lambda = 11,8 - 13$ мкм в среднем наиболее точна аппроксимация F_2 (до 4 раз в сравнении с F_3 и до 12 раз в сравнении с F_1) (см. рис. 2, a).

Р и с. 3. Угловой ход величин $\rho(\omega)$ и 0,2 $\delta\rho_1(\omega)$, $\delta\rho_2(\omega)$, $\delta\rho_3(\omega)$, соответствующих функциям F_1 , F_2 , F_3 , для $\lambda = 0,5$ мкм (*a*) и 12 мкм (δ)

В натурных условиях параметры n и κ воды подвержены воздействию температуры T, солености S и примесей. В работе [6] предложено выражение, связывающее n с T = 0 - 30 °C, S = 0 - 35% в диапазоне $\lambda = 0,4 - 0,7$ мкм и имеющее точность не хуже точности исходных данных n:

$$n(T, S, \lambda) = n_0 + (n_1 + n_2T + n_3T^2)S + n_4T^2 +$$
(11)

+
$$(n_5 + n_6S + n_7T) / \lambda + n_8 / \lambda^2 + n_9T / \lambda^3$$
, (11)

15

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

где $n_0 = 1,31405$, $n_1 = 1,779 \cdot 10^{-4}$, $n_2 = -1,05 \cdot 10^{-6}$, $n_3 = 1,6 \cdot 10^{-8}$, $n_4 = -2,02 \cdot 10^{-6}$, $n_5 = 0,15868$, $n_6 = 1,155 \cdot 10^{-5}$, $n_7 = -4,23 \cdot 10^{-6}$, $n_8 = -4,382 \cdot 10^{-3}$, $n_9 = 1,1455 \cdot 10^{-3}$. В работе [6] также приведены два выражения $n(T, S, \lambda)$, полученные ранее другими авторами – Макнейлом и Маттхаусом. На рис. 4, *а* показана зависимость n(T, S, 0,55) по формуле (11); на рис. 4, *б* представлена характеризующая поправки к *n* на температуру и соленость разность

$$dn(T, S, 0,55) = n(T, S, 0,55) - n(0; 0; 0,55).$$

Р и с. 4. Рассчитанные значения n(T, S, 0,55) по формуле (11) (*a*) и разности dn(T, S, 0,55) (б) (в скобках курсивом отмечены локальные значения dn(T, S, 0,589) из работы [7])

Разности между $n(T, S, \lambda)$ по формуле (11) и $n(T, S, \lambda)$ по формулам Макнейла и Маттхауса составляют от 0,003 до 0,018, тогда как разности между $dn(T, S, \lambda)$ по (11) и $dn(T, S, \lambda)$ по Макнейлу и Маттхаусу находятся на уровне $10^{-4} - 10^{-5}$. Точность измерений *n* в видимом диапазоне находится на уровне 1%, κ – на уровне 2 – 4% [8].

Оценка точности экспериментально определяемых параметров κ пресной воды в видимом диапазоне достигает десятков процентов [9], на таком же уровне (и выше: для $\lambda = 0,47$ мкм – около 300%) находится и разброс значений κ у разных авторов [10]. По-видимому, он вызван неконтролируемым наличием примесей. В ИК-диапазоне оценка точности и разброс значений экспериментально определяемых параметров n и κ не превышают 3 – 4% [8].

Оценки поправок на соленость для *n* и *к* в ИК-диапазоне можно получить сопоставлением данных по *n* и *к* для пресной и соленой воды [4, 11] (к сожалению, данные о температурной зависимости *n* и *к* в ИК-диапазоне отсутствуют). Оно показывает, что величина $dn(25, 20, \lambda) = 0,006$ при $\lambda = 3 - 8$ мкм линейно возрастает до 0,009 с ростом λ до 10,5 мкм и линейно понижается до 0,004 с ростом λ до 13 мкм. Соответствующая величина $d\kappa(25, 20, \lambda)$ близка к 0 при $\lambda = 3 - 9$ мкм и линейно спадает до -0,01 с дальнейшим ростом λ до 13 мкм.

Из приведенных значений следует, что при $\lambda = 0, 4 - 0, 7$ мкм погрешность определения ρ_0 , связанная с неточностью экспериментальных данных по *n* и

16

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

 κ , находится на уровне 0,5 – 1%, а связанная с неконтролируемыми вариациями температуры и солености около 10°C и 15‰ (например, в зонах апвеллингов, устьев рек), если не вводить поправку из формулы (11) на эти величины, – на уровне 0,5 – 2%. В диапазоне $\lambda = 10 - 13$ мкм эти погрешности составляют 5 – 7 и 10 – 25% соответственно.

Слагаемые комплексного коэффициента преломления для нефти, их анализ и аппроксимации $\rho_{ai}(\omega)$. Простая аппроксимация коэффициента отражения нефти актуальна для решения задач экомониторинга акваторий. Многокомпонентность состава нефти приводит к тому, что величины *n* и *к* нефти различных месторождений и различных нефтепродуктов заметно различаются между собой. Данные об этих величинах из статей [12 – 16] сведены воедино на рис. 5.

Р и с. 5. Параметры n (a) и κ (δ) сырой нефти и нефтепродуктов в видимом диапазоне $\lambda = 0, 3 - 0, 75$ мкм для n и 0, 3 - 0, 8 мкм для κ (линейная ось абсцисс) по данным работ [12 – 16] и в ИК-диапазоне $\lambda = 2 - 13$ мкм (логарифмическая ось) по данным статей [14, 15]

Как видно, разброс значений *n* в видимом и ИК-диапазонах достигает 5 – 7%; разброс значений κ в видимом диапазоне достигает 2 – 3 порядков, в ИК-диапазоне составляет 20 – 60%. В частности, в работе [15] приведены данные для тяжелой и легкой нефти месторождения Сураханы (Азербайджан). Для этих видов нефти различие между значениями *n* составляет 3,3 – 4%, а между значениями $\kappa - 2,5 - 3$ порядка в видимом и 10 – 20% в ИК-диапазоне.

Оптические свойства растекшейся по воде нефти из-за непостоянства ее компонентного состава (вследствие испарения, растворения в воде отдельных фракций, коагуляции, биохимических процессов) со временем изменяются. К примеру, расчеты по взятым из статьи [17] данным по *n* и $a = 4\pi\kappa/\lambda$ для образца нефти из месторождения Балтийского моря до и после долговременно-го обдува (причем имело место возрастание обоих параметров) показывают повышение ρ_0 в видимом диапазоне в среднем на 11%.

Расчеты по приведенным в работе [12] данным по n(T) в видимом диапазоне для двух видов нефти (месторождения Ромашкино (юг Татарстана) и Петробалтик (Гданьский залив)) выявили температурную зависимость вели-

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

чины ρ_0 на уровне -0.13% / °С и -0.15% / °С соответственно, что примерно в 17 раз больше, чем для воды.

Подставив эти значения в соотношение (5), получим, что разброс значений ρ_0 нефти, вызванный большими вариациями *n* и *к* в видимом и ИК-диапазонах вследствие различного химического состава нефти, достигает 20 – 40%. Из-за такого разброса универсальных стабильных коэффициентов m_i аппроксимационных функций F_i для нефти не существует. Тем не менее для оценочных аналитических расчетов или для ситуаций, когда *n* и *к* известны, аппроксимация (6) является полезной.

Для нефти также наилучшими аппроксимационными функциями являются F_2 и F_3 ; аппроксимация по F_3 в среднем в 2 раза точнее, чем по F_2 , и в 5,7 раза точнее, чем по F_1 , во всем диапазоне 0,4 – 13 мкм. Как и для воды, в диапазоне $\omega = 0 - 25^{\circ}$ лучшую аппроксимацию дает F_2 , а в среднем по всем углам от 0 до 90° – F_3 .

Величины ρ_0 , m_3 и $10^3 d\rho_3$ нефти из Ромашкино и Петробалтик [12] при температурах 0 и 20°С, а также (для сравнения) чистой воды при 20°С в зависимости от λ показаны на рис. 6.

Р и с. 6. Величины $\rho_0(a), m_3(b)$ и $10^3 d\rho_3(b)$ в зависимости от λ для нефти из месторождений Ромашкино (0°С – •, 20°С – ■) и Петробалтик (0°С – ▲, 20°С – ▼), а также для чистой воды w

Вследствие более высоких (на несколько порядков) величин κ нефти в сравнении с водой нефтяные пленки могут влиять на процессы пропускания солнечного излучения в водную толщу. На рис. 7 показаны характеризующие прозрачность нефти величины $z_0 = a^{-1}$ в зависимости от λ (большей прозрачности соответствуют бо́льшие величины z_0).

Как видно, нефтяные пленки толщиной около 100 мкм могут существенно поглощать падающий солнечный свет, тогда как пленки толщиной менее 1 мкм (каковые встречаются наиболее часто) за редкими исключениями ([15], тяжелая нефть месторождения Сураханы, Азербайджан) не препятствуют прохождению солнечного света видимого диапазона и теплового излучения атмосферы в водную толщу и обратно. Их присутствие проявляется главным образом гашением ряби и выглаживанием водной поверхности, а также снижением интенсивности испарения воды.

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

Р и с. 7. Величины z_0 (м) сырой нефти и нефтепродуктов в интервалах $\lambda = 0, 3 - 0, 8$ мкм (*a*) по данным работ [12 – 16] и $\lambda = 2 - 13$ мкм (*б*) по данным статей [14, 15]

Расчеты показывают универсальный характер аппроксимации (6) во всем диапазоне величин n = 1,05 - 1,6 и $\kappa = 0 - 0,3$, характерных для воды и нефти в интервале $\lambda = 0,4 - 13$ мкм. Для этого интервала λ и диапазона $\omega = 0 - 90^{\circ}$ аппроксимация по F_3 точнее, чем по F_2 , в 1,9 раза, и чем по F_1 , – в 6,7 раза. Также надо отметить, что производная $d\rho_{a3}(\omega) / d\omega$ имеет самый простой аналитический вид сравнительно с $d\rho_{a1}(\omega) / d\omega$, $d\rho_{a2}(\omega) / d\omega$.

Заключение. Неопределенность и вариации коэффициента отражения воды, вызванные неточностью экспериментальных значений оптических параметров *n* и κ и наличием неконтролируемых изменений температуры и солености, составляют в видимом диапазоне соответственно 0,5 – 1% и 0,5 – 2%, в ИК-диапазоне — 5 – 7% и 10 – 25%. Вариации коэффициента отражения нефти, вызванные неопределенностью ее химического состава, в видимом и ИК-диапазонах составляют 20 – 50%.

Показан универсальный характер вида применяемой аппроксимации $\rho_a(\omega)$ (6) в интервалах значений *n* и *к*, характерных для воды и нефти. Предложенная аппроксимационная функция F_3 (см. формулу (9)) в видимом диапазоне для воды обеспечивает в 9 и 2,2 раза более точную аппроксимацию $\rho(\omega)$, чем известные [1, 2]; только в интервале длин волн $\lambda = 12 - 13$ мкм она в 3 - 5 раз менее точна, чем в работе [2]. Представленная аппроксимация применима со сходным преимуществом в точности и к нефти с известными *n* и *к* во всем интервале $\lambda = 0, 4 - 13$ мкм.

СПИСОК ЛИТЕРАТУРЫ

- Wilson D. A method of computing ship contrast temperatures. // NSWC/WOL TR 78-187. 1979. – 100 p.
- Станичный С.В. Исследование формирования ИК-излучения в системе океан атмосфера: Дис. ... канд. физ.-мат. наук. – Севастополь, 1991. – 110 с.
- 3. *Schlick C.* An inexpensive BRDF model for physically-based rendering // Comp. Graph. Forum. 1994. <u>13</u>, № 3. P. 233 246.

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3

- 4. *Hale G.M., Querry M.R.* Optical constants of water in the 200-nm to 200-μm wavelength region // Appl. Opt. 1973. <u>12</u>, № 3. P. 555 563.
- 5. Segelstein D.J. The complex refractive index of water // M. S. Thesis. Kansas City, Missouri: University of Missouri, 1981. 167 p.
- 6. *Quan X., Fry E.S.* Empirical equation for the index of refraction of seawater // Appl. Opt. 1995. <u>34</u>, № 18. P. 3477 3480.
- Dorsey E. Properties of ordinary water-substance. N-Y.: Reinhold Publishing Corporation, 1940. – 673 p.
- Mesenbrink M.L. Complex indices of refraction for water and ice from visible to long wavelengths // M. S. Thesis. – Florida State University, 1996. – 92 p.
- Fry E.S. Visible and near-ultraviolet absorption spectrum of liquid water: comment // Appl. Opt. – 2000. – <u>39</u>, № 16. – P. 2743 – 2744.
- Smith R.C., Baker K.S. Optical properties of the clearest natural waters (200 800 nm) // Ibid. - 1981. - <u>20</u>, № 2. - P. 177 – 184.
- Querry M.R., Waring R.C., Holland W.E. et al. Optical constants in the infrared for aqueous solutions of NaCl // J. Opt. Soc. Am. – 1972. – <u>62</u>, № 7. – P. 849 – 855.
- Otremba Z. The impact on the reflectance in VIS of a type of crude oil film floating on the water surface // Opt. Express. – 2000. – <u>7</u>. – P. 129 – 134.
- Otremba Z., Toczek H. Optical properties of fuels and lubricants vs. aquatic environment protection issues // J. KONES Powertrain Transp. 2011. <u>18</u>, № 4. P. 325 330.
- 14. Альперович Л.И., Комарова А.И., Нарзиев Б.Н. и др. Оптические постоянные нефтей в области 0,25 25 мкм // Журнал прикладной спектроскопии. 1978. <u>28</u>, № 4. С. 719 723.
- 15. Золотарева В.М., Китушина И.А., Сутовский С.М. Оптические характеристики нефтей в диапазоне 0,4 – 15 мкм // Океанология. – 1977. – <u>17</u>, № 6. – С. 1113 – 1117.
- Carnesecchi F., Byfield V., Cipollini P. et al. An optical model for the interpretation of remotely sensed multispectral images of oil spill // Proc. SPIE. 2008. <u>7105</u>. P. 710504-1 710504-12.
- 17. *Król T., Stelmaszewski A., Freda W.* Variability in the optical properties of a crude oil seawater emulsion // Oceanologia. 2006. <u>48 (S)</u>. P. 203 211.

Морской гидрофизический институт НАН Украины,	Материал поступил
Севастополь	в редакцию 04.02.13
E-mail: nick_leb@mail.ru	После доработки 28.02.13

АНОТАЦІЯ Дана оцінка впливу варіацій реальної та уявної частин коефіцієнтів заломлення води та нафти на їх коефіцієнти відбиття. Представлена проста однопараметрична апроксимація френелівських коефіцієнтів відбиття води та нафти в інтервалі довжин хвиль 0,4 – 13 мкм, яка є більш точнішою в порівнянні з відомими.

Ключові слова: вода, нафта, коефіцієнти заломлення, поглинання, відбиття, кутовий хід, апроксимація.

ABSTRACT Influence of variations of real and imaginary parts of water and oil refractive indices upon their reflection coefficients is estimated. A simple one-parameter approximation of the water and oil Fresnel reflection coefficients in the wavelength range 0.4 - 13 mm is represented. It is more accurate as compared to the known ones.

Keywords: water, oil, indices of refraction, absorption and reflection, angular dependence, approximation.

ISSN 0233-7584. Мор. гидрофиз. журн., 2014, № 3