Lakhdar Aggoun *, Lakdere Benkherouf **, Ali Benmerzouga *

* Department of Mathematics and Statistics, Sultan Qaboos University (P.O.Box 36, Al-Khod 123, Sultanate of Oman, e-mail: laggoun@squ.edu.om)
** Department of Statistics and Operations Research College of Science, Kuwait University (P.O.Box 5969, Safat 13060, Kuwait, e-mail: lakdereb@kuc01.kuniv.edu.kw)

Partially Observed Discrete-valued Time Series

(Recommended by Prof. E. Dshalalow)

The analysis of time series of counts is a rapidly developing area. It has very broad application in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussian- like series. In this paper we derive recursive filters for partially observed discrete-valued time series. These processes are regulated by thinning binomial and multinomial operators (to be defined below).

Анализ временных последовательностей отсчетов - интенсивно развивающееся направление. Такой анализ широко используется для базовых целочисленных временных последовательностей, с которыми нельзя удовлетворительно работать в рамках классических последовательностей гауссова типа. Получены рекурсивные фильтры для частично наблюдаемых дискретизированных временных последовательностей. Показано, что эти процессы регулируются прореживающими биномиальными и полиномиальными операторами.
Key words: filtering, time series, change of measre, binomial thinning.

1. Introduction. The analysis of time series of counts is a rapidly developing area [1-6] and the book by MacDonald [7]. It has very broad application in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussianlike series. Many of the statistical which occur in practice are by their very nature discrete-valued (see [7] for more details). These models are also adequate for the study of branching processes with immigration [8].

In this paper we derive recursive filters for partially observed discretevalued time series. The dynamics of these processes are regulated by thinning binomial and multinomial operators.

The Binomial thining operator «<》 [2,5] is defined as follows. For any nonnegative integer-valued random variable X and $\alpha \in\{0,1\}$,

$$
\begin{equation*}
a \circ X=\sum_{j=1}^{X} Y_{j}, \tag{1}
\end{equation*}
$$

where Y_{1}, Y_{2}, \ldots is a sequence of of i.i.d. random variables independent of X, such that $P\left(Y_{j}=1\right)=1-P\left(Y_{j}=0\right)=\alpha$.
2. Scalar dynamics. Consider a system whose state at time k is $x_{k} \in \mathrm{Z}_{+}$. The time index k of the state evolution will be discrete and identified with $\mathbb{N}=$ $=\{0,1,2, \ldots$,$\} .$

Let (Ω, \mathcal{F}, P) be a probability space upon which $\left\{v_{k}\right\},\left\{w_{k}\right\}, k \in \mathbb{N}$ are independent and identically distributed (i.i.d.) sequences of random variables such that, for all $k, v_{k} \in \mathbb{Z}_{+}$has probability function φ and w_{k} is Gaussian random variables, having zero means and variances $1(N(0,1))$. Let $\left\{\mathcal{F}_{k}\right\}, k \in \mathbb{N}$ be the complete filtration (that is \mathcal{F}_{0} contains all the P-null events) generated by $\left\{x_{0}\right.$, $\left.x_{1}, \ldots, x_{k}\right\}$. The state of the system satisfies the dynamics

$$
\begin{equation*}
x_{k+1}=\alpha\left(X_{k}\right) \circ x_{k}+v_{k+1} . \tag{2}
\end{equation*}
$$

Here $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ is a stochastic process with finite state space S_{X} of size N which we identify, without loss of generality, with the canonical basis $\left\{e_{1}, \ldots, e_{N}\right\}$ of \mathbb{R}^{N}. Since X_{n} takes only a finite number of values we may write

$$
\left.\alpha\left(X_{k}\right)=\left(\alpha\left(e_{1}\right), \ldots, \alpha\left(e_{N}\right)\right)=\left(\alpha_{1}, \ldots, \alpha_{N}\right)\right) \triangleq \boldsymbol{\alpha} .
$$

Therefore $\alpha\left(X_{k}\right)=\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle$. Here $\langle.,$.$\rangle denotes the inner product in \mathbb{R}^{N}$. Let's assume the process X is a Markov chain with semimartingale representation [9, 10].

$$
\begin{equation*}
X_{k}=A X_{k-1}+M_{k} \tag{3}
\end{equation*}
$$

where $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of martingale increments with respect to the complete filtration generated by X and A denotes the probability transition matrix of the Markov chain X.

A useful and simple model for a noisy observation of x_{k} is to suppose it is given as a linear function of x_{k} plus a random «noise» term. That is, we suppose that for some real numbers c_{k} and positive real numbers d_{k} our observations have the form

$$
\begin{equation*}
y_{k}=c_{k} x_{k}+d_{k} w_{k} . \tag{4}
\end{equation*}
$$

We shall also write $\left\{\mathcal{Y}_{k}\right\}, k \in \mathbb{N}$ for the complete filtration generated by $\left\{y_{0}, y_{1}, \ldots, y_{k}\right\}$.

Using measure change techniques we shall derive a recursive expression for the conditional distribution of x_{k} given \mathcal{Y}_{k}.

Recursive estimation. Initially we suppose all processes are defined on an «ideal» probability space $(\Omega, \mathcal{F}, \bar{P})$; then under a new probability measure P, to be defined, the model dynamics (2) and (4) will hold.

Suppose that under \bar{P} :

1) $\left\{x_{k}\right\}, k \in \mathbb{N}$ is an i.i.d. sequence with density function $\phi(x)$ with support in \mathbb{Z}_{+};
2) $\left\{y_{k}\right\}, k \in \mathbb{N}$ is an i.i.d. $N(0,1)$ sequence with density function

$$
\psi(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} .
$$

For $l=0, \bar{\lambda}_{0}=\frac{\psi\left(d_{0}^{-1}\left(y_{0}-c_{0} x_{0}\right)\right)}{d_{0} \psi\left(y_{0}\right)}$ and for $l=1,2, \ldots$ define

$$
\begin{gather*}
\bar{\lambda}_{l}=\frac{\phi\left(x_{l}-\left\langle\boldsymbol{\alpha}, X_{l-1}\right\rangle \circ x_{l-1}\right) \psi\left(d_{l}^{-1}\left(y_{l}-c_{l} x_{l}\right)\right)}{d_{l} \phi\left(x_{l}\right) \psi\left(y_{l}\right)}, \tag{5}\\
\bar{\Lambda}_{k}=\prod_{l=0}^{k} \bar{\lambda}_{l} . \tag{6}
\end{gather*}
$$

Let \mathcal{G}_{k} be the complete σ-field generated by $\left\{x_{0}, x_{1}, \ldots, x_{k},\left\langle\boldsymbol{\alpha}, X_{0}\right\rangle \circ x_{0}, \ldots\right.$ $\left.\ldots,\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}, y_{0}, y_{1}, \ldots, y_{\underline{k}}\right\}$ for $k \in \mathbb{N}$.

Lemma 1. The process $\{\bar{\Lambda} k\}, k \in \mathbb{N}$ is a \bar{P}-martingale with respect to the filtration $\left\{\mathcal{G}_{k}\right\}, k \in \mathbb{N}$.
Proof. Since $\bar{\Lambda}_{k}$ is \mathcal{G}_{k}-measurable $\bar{E}\left[\bar{\Lambda}_{k+1} \mid \mathcal{G}_{k}\right]=\bar{\Lambda}_{k} \bar{E}\left[\bar{\Lambda}_{k+1} \mid \mathcal{G}_{k}\right]$. Therefore we must show that $\bar{E}\left[\bar{\Lambda}_{k+1} \mid \mathcal{G}_{k}\right]=1$:

$$
\begin{aligned}
& \bar{E}\left[\bar{\lambda}_{k+1} \mid \mathcal{G}_{k}\right]=\bar{E}\left[\left.\frac{\phi\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) \psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right)}{d_{k+1} \phi\left(x_{k+1}\right) \psi\left(y_{k+1}\right)} \right\rvert\, \mathcal{G}_{k}\right]= \\
= & \bar{E}\left[\frac{\phi\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right)}{\phi\left(x_{k+1}\right)} \bar{E}\left[\left.\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} \right\rvert\, \mathcal{G}_{k}, x_{k+1}\right] \mathcal{G}_{k}\right] .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \bar{E}\left[\left.\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} \right\rvert\, \mathcal{G}_{k}, x_{k+1}\right]= \\
& =\int_{\mathbb{R}} \frac{\psi\left(d_{k+1}^{-1}\left(y-c_{k+1} x_{k+1}\right)\right)}{d_{k+1} \psi(y)} \psi(y) d y=1
\end{aligned}
$$

and

$$
\begin{gathered}
\bar{E}\left[\left.\frac{\phi\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right)}{\phi\left(x_{k+1}\right)} \right\rvert\, \mathcal{G}_{k}\right]= \\
=\bar{E}\left[\left.\sum_{x \in \mathbb{Z}_{+}} \frac{\phi\left(x-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right)}{\phi(x)} \phi(x) \right\rvert\, \mathcal{G}_{k}\right]=\sum_{u \in \mathbb{Z}_{+}} \phi(u)=1 .
\end{gathered}
$$

Define P on $\{\Omega, \mathcal{F}\}$ by setting the restriction of the Radon-Nykodim derivative $\frac{d P}{d \bar{P}}$ to \mathcal{G}_{k} equal to $\bar{\lambda}_{k}$. Then:

Lemma 2. $\left\{v_{k}\right\}, k \in \mathbb{N}$ is an i.i.d. sequence with density function $\phi(x)$ with support in \mathbb{Z}_{+}and $\left\{w_{k}\right\}, k \in \mathbb{N}$ are i.i.d. $N(0,1)$ sequences of random variables, where

$$
\begin{gathered}
v_{k+1} \stackrel{\Delta}{=}\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right), \\
w_{k} \stackrel{\Delta}{=}\left(d_{k}^{-1}\left(y_{k}-c_{k} x_{k}\right) .\right.
\end{gathered}
$$

Pr o o . Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are «test» functions (i.e. measurable functions with compact support). Then with E (resp. \bar{E}) denoting expectation under P (resp. \bar{P}) and using Bayes' Theorem $[9,10]$

$$
\begin{gathered}
E\left[f\left(v_{k+1}\right) g\left(w_{k+1}\right) \mid \mathcal{G}_{k}\right]=\frac{\bar{\Lambda}_{k} \bar{E}\left[\bar{\lambda}_{k+1} f\left(v_{k+1}\right) g\left(w_{k+1}\right) \mid \mathcal{G}_{k}\right]}{\bar{\Lambda}_{k} \bar{E}\left[\bar{\lambda}_{k+1} \mid \mathcal{G}_{k}\right]}= \\
=\bar{E}\left[\bar{\lambda}_{k+1} f\left(v_{k+1}\right) g\left(w_{k+1}\right) \mid \mathcal{G}_{k}\right]
\end{gathered}
$$

where the last equality follows from Lemma 1. Consequently

$$
\begin{gathered}
E\left[f\left(v_{k+1}\right) g\left(w_{k+1}\right) \mid \mathcal{G}_{k}\right]=\bar{E}\left[\bar{\lambda}_{k+1} f\left(v_{k+1}\right) g\left(w_{k+1}\right) \mid \mathcal{G}_{k}\right]= \\
=\bar{E}\left[\frac{\phi\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) \psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right)}{d \phi\left(x_{k+1}\right) \psi\left(y_{k+1}\right)}\right] \times \\
\left.\times f\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) g\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right) \mid \mathcal{G}_{k}\right]= \\
=\bar{E}\left[\frac{\phi\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right)}{\phi\left(x_{k+1}\right)} f\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) \times\right. \\
\left.\left.\times \bar{E}\left[\left.\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} g\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right) \right\rvert\, \mathcal{G}_{k}, x_{k+1}\right] \right\rvert\, \mathcal{G}_{k}\right] .
\end{gathered}
$$

Now

$$
\begin{aligned}
& \bar{E}\left[\left.\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} g\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x_{k+1}\right)\right) \right\rvert\, \mathcal{G}_{k}, x_{k+1}\right]= \\
= & \int_{\mathbb{R}} \frac{\psi\left(d_{k+1}^{-1}\left(y-c x_{k+1}\right)\right)}{d_{k+1} \psi(y)} \psi(y) g\left(d_{k+1}^{-1}\left(y-c_{k+1} x_{k+1}\right)\right) d y=\int_{\mathbb{R}} \psi(u) g(u) d u
\end{aligned}
$$

and

$$
\begin{gathered}
\bar{E}\left[\left.\frac{\phi\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right)}{\phi\left(x_{k+1}\right)} f\left(x_{k+1}-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) \right\rvert\, \mathcal{G}_{k}\right]= \\
=\bar{E}\left[\left.\sum_{x \in \mathbb{Z}_{+}} \frac{\phi\left(x-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right)}{\phi(x)} \phi(x) f\left(x-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) \right\rvert\, \mathcal{G}_{k}\right]=\sum_{x \in \mathbb{Z}_{+}} \phi(z) f(z) .
\end{gathered}
$$

Therefore $E\left[f\left(v_{k+1}\right) g\left(w_{k+1}\right) \mid \mathcal{G}_{k}\right]=\sum_{x \in \mathbb{Z}_{+}} \phi(z) f(z) \int_{\mathbb{R}} \psi(u) g(u) d u$ and the lemma is proved.

Using Bayes' Theorem [10]

$$
\begin{equation*}
E\left[I\left(x_{k}=x\right) X_{k} \mid \mathcal{Y}_{k}\right]=\frac{\bar{E}\left[\bar{\Lambda}_{k} I\left(x_{k}=x\right) X_{k} \mid \mathcal{Y}_{k}\right]}{\bar{E}\left[\bar{\Lambda}_{k} \mid \mathcal{Y}_{k}\right]} \tag{7}
\end{equation*}
$$

where \bar{E} (resp. E) denotes expectations with respect to \bar{P} (resp. P). Consider the unnormalized, conditional expectation which is the numerator of (7) and write

$$
\begin{equation*}
\bar{E}\left[\bar{\Lambda}_{k} I\left(x_{k}=x\right) X_{k} \mid \mathcal{Y}_{k}\right]=q_{k}(x)=\left(q_{k}^{1}(x), \ldots, q_{k}^{N}(x)\right)^{\prime} . \tag{8}
\end{equation*}
$$

If $p_{k}($.$) denotes the normalized conditional density, such that E\left[I\left(x_{k}=\right.\right.$ $\left.=x) X_{k} \mid \mathcal{Y}_{k}\right]=p_{k}(x)$, then from (7) we see that

$$
p_{k}(x)=q_{k}(x)\left[\sum_{z} q_{k}(z)\right]^{-1} \text { for } x \in \mathbb{Z}_{+}, k \in \mathbb{N} .
$$

Then we have the following result.
Theorem 1. The measure-valued process q satisfies the recursion

$$
q_{k+1}(x)=A \sum_{z \in \mathbb{Z}_{+}} \mathbf{B}(z, x) q_{k}(z),
$$

where $\mathbf{B}(z, x)$ is a diagonal matrix with entries

$$
\frac{\psi\left(d^{-1}\left(y_{k+1}-c x\right)\right)}{d \psi\left(y_{k+1}\right)} \sum_{r=0}^{z} \phi(x-r)\binom{z}{r} \alpha_{i}^{r}\left(1-\alpha_{i}\right)^{z-r} .
$$

Proof. In view of (3), (5) and (6)

$$
\begin{gathered}
\bar{E}\left[\bar{\Lambda}_{k} \bar{\lambda}_{k+1} I\left(x_{k+1}=x\right) X_{k+1} \mid \mathcal{Y}_{k+1}\right]= \\
=\bar{E}\left[\bar{\Lambda}_{k} \frac{\phi\left(x-\left\langle\boldsymbol{\alpha}, X_{k}\right\rangle \circ x_{k}\right) \psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x\right)\right)}{d_{k+1} \phi(x) \psi\left(y_{k+1}\right)} \phi(x)\left(\mathrm{A} X_{k}+M_{k+1} \mid \mathcal{Y}_{k+1}\right]\right]=
\end{gathered}
$$

$$
\begin{aligned}
& \left.\left.=\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} \sum_{i=1}^{N} \bar{E} \bar{\Lambda}_{k} \phi\left(x-\alpha_{i} \circ x_{k}\right)\left\langle X_{k}, e_{i}\right\rangle \right\rvert\, \mathcal{Y}_{k+1}\right] A e_{i}= \\
& =\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} \times \\
& \left.\times \sum_{i=1}^{N} \bar{E}\left[\left.\bar{\Lambda}_{k} \sum_{r=0}^{x_{k}} \phi(x-r)\binom{x_{k}}{r} \alpha_{i}^{r}\left(1-\alpha_{i}\right)^{x_{k}-r}\left\langle X_{k}, e_{i}\right\rangle \right\rvert\, \mathcal{Y}_{k+1}\right]\right] A e_{i}= \\
& =\frac{\psi\left(d_{k+1}^{-1}\left(y_{k+1}-c_{k+1} x\right)\right)}{d_{k+1} \psi\left(y_{k+1}\right)} \times \\
& \left.\times \sum_{i=1}^{N} \bar{E}\left[\left.\bar{\Lambda}_{k} \sum_{z \in \mathbb{Z}_{+}} \sum_{r=0}^{z} \phi(x-r)\binom{z}{r} \alpha_{i}^{r}\left(1-\alpha_{i}\right)^{z-r} I\left(x_{k}=z\right)\left\langle X_{k}, e_{i}\right\rangle \right\rvert\, \mathcal{Y}_{k}\right]\right] A e_{i} .
\end{aligned}
$$

The last equality follows from the fact that x_{k+1} has distribution ϕ and is independent of everything else under \bar{P}. Also, note that given y_{k+1} we condition only on \mathcal{Y}_{k} to get an expression similar to notation (8), that is,

$$
\begin{gathered}
\bar{E}\left[\bar{\Lambda}_{k+1} I\left(x_{k+1}=x\right) X_{k+1} \mid \mathcal{Y}_{k+1}\right]= \\
=\frac{\psi\left(d^{-1}\left(y_{k+1}-c x\right)\right)}{d \psi\left(y_{k+1}\right)} \sum_{i=1}^{N}\left\langle\sum_{z \in \mathbb{Z}_{+}} \sum_{r=0}^{z} \phi(x-r)\binom{z}{r} \alpha_{i}^{r}\left(1-\alpha_{i}\right)^{z-r} q_{k}(z) e_{i}\right\rangle A e_{i}= \\
=A \sum_{z \in \mathbb{Z}_{+}} \mathbf{B}(z, x) q_{k}(z),
\end{gathered}
$$

where $\mathbf{B}(z, x)$ is a diagonal matrix with entries

$$
\frac{\psi\left(d^{-1}\left(y_{k+1}-c x\right)\right)}{d \psi\left(y_{k+1}\right)} \sum_{r=0}^{z} \phi(x-r)\binom{z}{r} \alpha_{i}^{r}\left(1-\alpha_{i}\right)^{z-r} .
$$

Which finishes the proof.
Vector dynamics. Consider a system whose state at time $k=0,1,2, \ldots$, is $X_{k} \in \mathbb{Z}_{+}^{m}$ and which can be observed only indirectly through another process $Y_{k} \in \mathbb{R}^{d}$.

Let (Ω, \mathcal{F}, P) be a probability space upon which V_{k} and W_{k} are sequences of random variables such that W_{k} is normally distributed with means 0 and covariance identity matrices $I_{d \times d}$ and V_{k} has probability distribution ϕ with support in \mathbb{Z}_{+}^{m}. Assume that $D_{k}, k \geq 0$, are non singular matrices. Let $\left\{\mathcal{F}_{k}\right\}, k \in \mathbb{N}$, be the complete filtration generated by $\left\{X_{0}, X_{1}, \ldots, X_{k}\right\}$.

Now we wish to generalize the operator \circ to vector-valued random variables with non-negative integer-valued components.

For any vector $X=\left(X^{1}, \ldots, X^{m}\right)^{\prime}$ in \mathbb{Z}_{+}^{m} and any vector $\boldsymbol{\alpha}^{i}=\left(\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}\right)^{\prime}$ such that $\alpha_{j}^{i}>0$ and $\sum_{i} \alpha_{j}^{i}=1$ define

$$
\begin{equation*}
\boldsymbol{\alpha}^{i} \varnothing X^{i}=\left(\alpha_{1}^{i} \varnothing X^{i}, \ldots, \alpha_{m}^{i} \varnothing X^{i}\right)^{\prime}=\left(\sum_{j=1}^{Z_{1}^{i}} Y_{1 j}^{i}, \ldots, \sum_{j=1}^{Z_{m}^{i}} Y_{m j}^{i}\right)^{\prime}, \tag{9}
\end{equation*}
$$

where $Z_{\ell}^{i}, i, \ell=1, \ldots, m$, are non-negative, integer-valued random variables such that $\sum_{\ell=1}^{m} Z_{\ell}^{i}=X^{i}$. For each $i, \ell, Y_{\ell 1}^{i}, \ldots, Y_{\ell m}^{i}$, are i.i.d. nonnegative, integer-valued random variables with probability function ρ_{ℓ}^{i}.

Let

$$
\begin{equation*}
A=\left(\boldsymbol{\alpha}^{1}, \ldots, \mathbf{\alpha}^{m}\right), A \varnothing X=\sum_{i=1}^{m} \mathbf{\alpha}^{i} \varnothing X^{i} \tag{10}
\end{equation*}
$$

One possible interpretation of this model is that $X=\left(X^{1}, \ldots, X^{m}\right)^{\prime}$ represents a population composed of m distinct groups of, say, cells. Some time later, each cell in the population, regardless to which group it belongs, can mutate and divide itself into a number of new cells of any of the m types. For instance, a cell of type 1 may mutate with probability α_{2}^{1} to produce through division a new generation of cells of type 2. Let $\alpha_{2}^{1} \oslash X^{1}=\sum_{j=1}^{Z_{2}^{1}} Y_{2 j}^{1}$ is the (random) number of new cells of type 2 with Z_{2}^{1} parents of type1. In other words, for $j=1, \ldots, Z_{2}^{1}$, the j-th parent cell of type 1 gave birth to $Y_{2 j}^{1}$ new cells of type 2. Here $Y_{2 j}^{1}$ is a random variable with probability function ρ_{2}^{1} with support in \mathbb{Z}_{+}.

The state and observations of the system are given by the dynamics

$$
\begin{gather*}
X_{k+1}=A_{k} \varnothing X_{k}+V_{k+1} \in \mathbb{Z}_{+}^{m}, \tag{11}\\
Y_{k}=C_{k} X_{k}+D_{k} W_{k} \in \mathbb{R}^{d} . \tag{12}
\end{gather*}
$$

Here C_{k} is a matrix of appropriate dimensions and $A_{k} \varnothing X_{k}$ is defined in (10).
We write again $\left\{\mathcal{Y}_{k}\right\}, k \in \mathbb{N}$, for the complete filtration generated by the observed data $\left\{Y_{0}, Y_{1}, \ldots, Y_{k}\right\}$ up to time k. Using measure change techniques we shall derive a recursive expression for the conditional distribution of X_{k} given \mathcal{Y}_{k}.

Recursive estimation. Initially we suppose all processes are defined on an «ideal» probability space $(\Omega, \mathcal{F}, \bar{P})$; then under a new probability measure P, to be defined, the model dynamics (11) and (12) will hold.

Suppose that under \bar{P} :

1) $\left\{X_{k}\right\}, k \in \mathbb{N}$, is an i.i.d. sequence with probability function $\phi(x)$ defined on \mathbb{Z}_{+}^{m};
2) $\left\{Y_{k}\right\}, k \in \mathbb{N}$, is an i.i.d. $N\left(0, I_{d \times d}\right)$ sequence with density function $\psi(y)=\frac{1}{(2 \pi)^{d / 2}} e^{-y^{\prime} y / 2}$.

For any square matrix B write $|B|$ for the absolute value of its determinant.
For $l=0, \bar{\lambda}_{0}=\frac{\psi\left(D_{0}^{-1}\left(Y_{0}-C_{0} X_{0}\right)\right.}{\left|D_{0}\right| \psi\left(Y_{0}\right)}$ and for $l=1,2, \ldots$ define

$$
\begin{gathered}
\bar{\lambda}_{l}=\frac{\phi\left(X_{l}-A_{l-1} \varnothing X_{l-1}\right) \psi\left(D_{l}^{-1}\left(Y_{l}-C_{l} X_{l}\right)\right.}{\left|D_{l}\right| \phi\left(X_{l}\right) \psi\left(Y_{l}\right)}, \\
\bar{\Lambda}_{k}=\prod_{l=0}^{k} \bar{\lambda}_{l} .
\end{gathered}
$$

Let $\left\{\mathcal{G}_{k}\right\}$ be the complete σ-field generated by $\left\{X_{0}, X_{1}, \ldots, X_{k}, Y_{0}, Y_{1}, \ldots, Y_{k}\right\}$ for $k \in \mathbb{N}$.

The process $\left\{\bar{\Lambda}_{k}\right\}, k \in \mathbb{N}$, is an \bar{P}-martingale with respect to the filtration $\left\{\mathcal{G}_{k}\right\}$.
Define P on $\{\Omega, \mathcal{F}\}$ by setting the restriction of the Radon-Nykodim derivative $\frac{d P}{d \bar{P}}$ to \mathcal{G}_{k} equal to $\bar{\Lambda}_{k}$. It can be shown that on $\{\Omega, \mathcal{F}\}$ and under P, W_{k} is normally distributed with means 0 and covariance identity matrix $I_{d \times d}$, and V_{k} has probability function ϕ defined on \mathbb{Z}_{+}^{m} where

$$
V_{k+1} \triangleq X_{k+1}-A_{k} \varnothing X_{k}, W_{k} \triangleq D_{k}^{-1}\left(Y_{k}-C_{k} X_{k}\right),
$$

write

$$
\bar{E}\left[\bar{\Lambda}_{k} I\left(x_{k}=x\right) X_{k} \mid \mathcal{Y}_{k}\right]=q_{n}(x) .
$$

Then we have the following result.
Theorem 2. For $k \geq 0$

$$
\begin{gathered}
q_{k+1}(x)=\frac{\psi\left(D_{k+1}^{-1}\left(Y_{k+1}-C_{k+1} x\right)\right.}{\left|D_{k+1}\right| \psi\left(Y_{k+1}\right)} \times \\
\times \sum_{u \in \mathbb{Z}_{+}^{m}} \sum_{i=1}^{m} \sum_{z_{1}^{i}+\ldots+z_{m}^{i}=u^{i}} \prod_{i=1}^{m}\binom{x_{k}^{i}}{z_{1}^{i} \ldots z_{m}^{i}}\left(\alpha_{1}^{i}\right)^{z_{1}^{i}} \ldots\left(\alpha_{m}^{i}\right)^{z_{m}^{i}} \times
\end{gathered}
$$

$$
\times \phi\left(x-\sum_{i=1}^{m}\left(\sum_{j=1}^{z_{i}^{i}} y_{1 j}^{i}, \ldots, \sum_{j=1}^{z_{m}^{i}} y_{m j}^{i}\right)^{\prime}\right) \prod_{i, \ell=1}^{m} \prod_{j=1}^{z_{i}^{i}} \rho_{\ell}^{i}\left(y_{\ell j}^{i}\right) q_{k}(u) .
$$

Pr o of. The proof is similar to the scalar case and is skipped.
A sampling observation model. The state of the system is again given by the dynamics in (11). Write $N_{k}=\sum_{i=1}^{m} X_{k}^{i}$ and $\Pi\left(N_{k}\right)$ for the set of all partitions of N_{k} into m summands; that is, $x \in \Pi\left(N_{k}\right)$ if $x=\left(x^{1}, x^{2}, \ldots, x^{m}\right)$ where each x^{i} is a non-negative integer and $x^{1}+x^{2}+\ldots+x^{m}=N_{k}$. In this section we assume that the total number of individual N_{k} is approximately known but it is practically very difficult to measure directly their distribution between the m types. Therefore the population is sampled by withdrawing, (with replacement), at each time k, n individuals and observing to which type they belong. That is, at each time k a sample

$$
Y_{k}=\left(Y_{k}^{1}, Y_{k}^{2}, \ldots, Y_{k}^{m}\right)=\Pi(n)
$$

is obtained, where $\Pi(n)$ is the set of partitions of n.
We assume that

$$
P\left(Y_{k}=y \mid X_{k}=x\right)=\left(\begin{array}{c}
n \tag{13}\\
y^{1} \\
y^{2} \ldots . . y^{m}
\end{array}\right)\left(\frac{x^{1}}{N_{k}}\right)^{y^{1}}\left(\frac{x^{2}}{N_{k}}\right)^{y^{2}} \ldots\left(\frac{x^{m}}{N_{k}}\right)^{y^{m}} .
$$

Clearly this sequence of samples, $Y(0), Y(1), Y(2), \ldots$ enables us to revise our estimates of the state X_{k}.

Recursive estimates. Initially we suppose all processes are defined on an «ideal» probability space $(\Omega, \mathcal{F}, \bar{P})$; then under a new probability measure P, to be defined, the model dynamics (11) and (13) will hold.

Suppose that under \bar{P} :

1) $\left\{X_{k}\right\}, k \in \mathbb{N}$, is an i.i.d. sequence with probability function $\boldsymbol{\xi}(x)$ defined on \mathbb{Z}_{+}^{m};
2) $\left\{Y_{k}\right\}, k \in \mathbb{N}$, is an i.i.d. sequence such that for $y \in \Pi(n)$,

$$
\bar{P}\left(Y_{k}=y \mid \mathcal{G}_{k}\right)=\binom{n}{y^{1} y^{2} \ldots y^{m}}\left(\frac{1}{m}\right)^{n} .
$$

For $l=0, \bar{\lambda}_{0}=1$ and for $l=1,2, \ldots$ define

$$
\bar{\lambda}_{l}=\frac{\boldsymbol{\xi}\left(X_{l}-A_{l-1} \varnothing X_{l-1}\right)}{\boldsymbol{\xi}\left(X_{l}\right)} m^{n}\left(\frac{X_{k}^{1}}{N_{k}}\right)^{Y_{k}^{1}}\left(\frac{X_{k}^{2}}{N_{k}}\right)^{Y_{k}^{2}} \ldots\left(\frac{X_{k}^{m}}{N_{k}}\right)^{Y_{k}^{m}}, \bar{\Lambda}_{k}=\prod_{l=0}^{k} \bar{\lambda}_{l} .
$$

Let $\left\{\mathcal{G}_{k}\right\}$ be the complete σ-field generated by $\left\{X_{0}, X_{1}, \ldots, X_{k}, Y_{0}, Y_{1}, \ldots, Y_{k}\right\}$ for $k \in \mathbb{N}$. The process $\left\{\bar{\Lambda}_{k}\right\}, k \in \mathbb{N}$, is an \bar{P}-martingale with respect to the filtration $\left\{\mathcal{G}_{k}\right\}$.

Define P on $\{\Omega, \mathcal{F}\}$ by setting the restriction of the Radon-Nykodim derivative $\frac{d P}{d \bar{P}}$ to \mathcal{G}_{k} equal to $\bar{\Lambda}_{k}$. It can be shown that on $\{\Omega, \mathcal{F}\}$ and under P, V_{k} has probability function $\xi(x)$ defined on \mathbb{Z}_{+}^{m} where $V_{k+1} \stackrel{\Delta}{=} X_{k+1}-A_{k} \varnothing X_{k}$ and (13) is true. For $r \in \Pi\left(N_{k+1}\right)$ write $q_{k+1}(r)=\bar{E}\left[\bar{\Lambda}_{k+1} I\left(X_{k+1}=r\right) \mid \mathcal{Y}_{k+1}\right]$.

Note that

$$
\sum_{r \in \Pi\left(N_{k}\right)} I\left(X_{k+1}=r\right)=1
$$

so that

$$
\sum_{r \in \Pi\left(N_{k}\right)} q_{k+1}(r)=\bar{E}\left[\bar{\Lambda}_{k+1} \mid \mathcal{Y}_{k+1}\right] .
$$

We then have the following recursion.
Theorem 3. If $Y_{k}=\left(Y_{k}^{1}, Y_{k}^{2}, \ldots, Y_{k}^{m}\right)=\left(y^{1}, y^{2}, \ldots, y^{m}\right) \in \Pi\left(N_{k}\right)$,

$$
\begin{gathered}
q_{k}(r)=m^{n}\left(\frac{r^{1}}{N_{k}}\right)^{y^{1}}\left(\frac{r^{2}}{N_{k}}\right)^{y^{2}} \ldots\left(\frac{r^{m}}{N_{k}}\right)^{y^{m}} \times \\
\times \sum_{s \in \Pi\left(N_{k-1}\right)} \sum_{i=1}^{m} \sum_{z_{1}^{i}+\ldots+z_{m}^{i}=s^{i}} \prod_{i=1}^{m}\binom{s^{i}}{z_{1}^{i} \ldots z_{m}^{i}}\left(\alpha_{1}^{i}\right)^{z_{1}^{i}} \ldots\left(\alpha_{m}^{i}\right)^{z_{m}^{i}} \times \\
\times \boldsymbol{\xi}\left(r-\sum_{i=1}^{m}\left(\sum_{j=1}^{z_{1}^{i}} y_{1 j}^{i}, \ldots, \sum_{j=1}^{z_{m}^{i}} y_{m j}^{i}\right)^{\prime}\right) \prod_{i, \ell=1}^{m} \prod_{j=1}^{z_{i}^{i}} \rho_{\ell}^{i}\left(y_{\ell j}^{i}\right) q_{k-1}(s) .
\end{gathered}
$$

(Note we take $0^{0}=1$.)
Proof.

$$
\begin{gathered}
q_{k}(r)=\bar{E}\left[\bar{\Lambda}_{k} I\left(X_{k}=r\right) \mid \mathcal{Y}_{k}\right]= \\
=\bar{E}\left[\bar{\Lambda}_{k} I\left(X_{k}=r\right) \mid \mathcal{Y}_{k-1}, Y_{k}=\left(y^{1}, y^{2}, \ldots, y^{m}\right)\right]= \\
=\bar{E}\left[\bar{\Lambda}_{k-1} \bar{\lambda}_{k} I\left(X_{k}=r\right) \mid \mathcal{Y}_{k-1}, Y_{k}=\left(y^{1}, y^{2}, \ldots, y^{m}\right)\right]= \\
=m^{n}\left(\frac{r^{1}}{N_{k}}\right)^{y^{1}}\left(\frac{r^{2}}{N_{k}}\right)^{y^{2}} \ldots\left(\frac{r^{m}}{N_{k}}\right)^{y^{m}} \bar{E}\left[\left.\bar{\Lambda}_{k-1} I\left(X_{k}=r\right) \frac{\boldsymbol{\xi}\left(r-A_{k} \varnothing X_{k-1}\right)}{\boldsymbol{\xi}(r)} \right\rvert\, \mathcal{Y}_{k-1}\right]=
\end{gathered}
$$

$=m^{n}\left(\frac{r^{1}}{N_{k}}\right)^{y^{1}}\left(\frac{r^{2}}{N_{k}}\right)^{y^{2}} \ldots\left(\frac{r^{m}}{N_{k}}\right)^{y^{m}} \bar{E}\left[\bar{\Lambda}_{k-1} \sum_{s \in \Pi\left(N_{k-1}\right)} \boldsymbol{\xi}\left(r-A_{k} \varnothing s\right) I\left(X_{k-1}=s\right) \mid \mathcal{X}_{k-1}\right]$,
using the definition of the operator \varnothing in (9) and (10) yields the result.

Remark.

$$
\left.P\left(X_{k}=r\right) \mid \mathcal{Y}_{k}\right)=E\left[I\left(X_{k}=r\right) \mid \mathcal{Y}_{k}\right]=\frac{q_{k}(r)}{\sum_{s \in \Pi\left(N_{k}\right)} q_{k}(s)} .
$$

To obtain the expected value of X_{k} given the observations \mathcal{Y}_{k} we consider the vector of values $\left.r=r^{1}, r^{2}, \ldots, r^{m}\right)$ for any $r \in \Pi\left(N_{k}\right)$. Then

$$
E\left[X_{k} \mid \mathcal{Y}_{k}\right]=\frac{\sum_{r \in \Pi\left(N_{k}\right)} q_{k}(r) r}{\sum_{s \in \Pi\left(N_{k}\right)} q_{k}(s)} .
$$

Аналіз часових послідовностей відліків - напрям, що інтенсивно розвивається. Такий аналіз широко використовується для базових цілочисельних часових послідовностей, з якими не можна задовільно працювати у рамках класичних послідовностей гаусова типу. Отримано рекурсивні фільтри для частково спостерігаємих дискретизованих часових послідовностей. Показано, що ці процеси регулюються проріжуючими біноміальними та поліноміальними операторами.

1. Aly A. A, Bouzar N. On some integer-valued autoregressive moving average models// J. of Multivariate Analysis. - 1994. - 50. - P. 132-151.
2. Al-Osh M. N., Alzaid A. A. First order integer-valued autoregressive (INAR(1)) process// J. Time Series Analysis. - 1987. - 8. - P. 261—275.
3. Freeland R. K., McCabe B. P. M. Analysis of low count time series data by poisson autoregression// Ibid. - 2004. - 25. - No 5. - P. 701—722.
4. Jung Robert C., Tremayne A. R. Testing for serial dependence in time series models of counts// Ibid. - 2003. - Vol. 24. - P. 65.
5. McKenzie E. Some simple models for discrete variate time series// Water Res Bull.- 1985. 21. - P. 645-650.
6. McKenzie E. Some ARMA models for dependent sequences of Poisson counts// Advances in Applied Probability. - 1988. - 20. - No 44. - P. 822-835.
7. Iain L. MacDonald Hidden Markov and other models for Discrete-Valued Time Series. Chapman \& Hall, 1997.
8. Dion J. -P. , Gauthier G., Latour A. Branching Processes with Immigration and Integer-Valued Time Series// Serdica Mathematical J. - 1995. - Vol. 21, No 2.
9. Aggoun L., Elliott R.J. Measure Theory and Filtering: Introduction with Applications// Cambridge Series In Statistical and Probabilistic Mathematics.-2004.
10. Elliot R. J., Aggoun L., Moore J. B. Hidden Markov Models: Estimation and Control// Applications of Mathematics. - 1995. -No. 29.

Поступила 21.12.06

