Lakhdar Aggoun *, Lakdere Benkherouf **, Ali Benmerzouga *
* Department of Mathematics and Statistics, Sultan Qaboos University

- Department of Mathematics and Statistics, Sultan Qaboos University (P.O.Box 36, Al-Khod 123, Sultanate of Oman, e-mail: laggoun@squ.edu.om)
- ** Department of Statistics and Operations Research College of Science, Kuwait University (P.O.Box 5969, Safat 13060, Kuwait, e-mail: lakdereb@kuc01.kuniv.edu.kw)

Partially Observed Discrete-valued Time Series

(Recommended by Prof. E. Dshalalow)

The analysis of time series of counts is a rapidly developing area. It has very broad application in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussian-like series. In this paper we derive recursive filters for partially observed discrete-valued time series. These processes are regulated by thinning binomial and multinomial operators (to be defined below).

Анализ временных последовательностей отсчетов — интенсивно развивающееся направление. Такой анализ широко используется для базовых целочисленных временных последовательностей, с которыми нельзя удовлетворительно работать в рамках классических последовательностей гауссова типа. Получены рекурсивные фильтры для частично наблюдаемых дискретизированных временных последовательностей. Показано, что эти процессы регулируются прореживающими биномиальными и полиномиальными операторами.

Key words: filtering, time series, change of measre, binomial thinning.

1. Introduction. The analysis of time series of counts is a rapidly developing area [1–6] and the book by MacDonald [7]. It has very broad application in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussianlike series. Many of the statistical which occur in practice are by their very nature discrete-valued (see [7] for more details). These models are also adequate for the study of branching processes with immigration [8].

In this paper we derive recursive filters for partially observed discretevalued time series. The dynamics of these processes are regulated by thinning binomial and multinomial operators.

The Binomial thining operator «»» [2, 5] is defined as follows. For any nonnegative integer-valued random variable *X* and $\alpha \in \{0, 1\}$,

$$a \circ X = \sum_{j=1}^{X} Y_j,\tag{1}$$

ISSN 0204–3572. Электрон. моделирование. 2007. Т. 29. № 5

33

where Y_1, Y_2, \ldots is a sequence of of i.i.d. random variables independent of X, such that $P(Y_i = 1) = 1 - P(Y_i = 0) = \alpha$.

2. Scalar dynamics. Consider a system whose state at time k is $x_k \in Z_+$. The time index k of the state evolution will be discrete and identified with $\mathbb{N} = \{0, 1, 2, ..., \}$.

Let (Ω, \mathcal{F}, P) be a probability space upon which $\{v_k\}, \{w_k\}, k \in \mathbb{N}$ are independent and identically distributed (i.i.d.) sequences of random variables such that, for all $k, v_k \in \mathbb{Z}_+$ has probability function φ and w_k is Gaussian random variables, having zero means and variances 1 (N(0, 1)). Let $\{\mathcal{F}_k\}, k \in \mathbb{N}$ be the complete filtration (that is \mathcal{F}_0 contains all the *P*-null events) generated by $\{x_0, x_1, ..., x_k\}$. The state of the system satisfies the dynamics

$$x_{k+1} = \alpha (X_k) \circ x_k + v_{k+1}.$$
 (2)

Here $\{X_k\}_{k\in\mathbb{N}}$ is a stochastic process with finite state space S_X of size N which we identify, without loss of generality, with the canonical basis $\{e_1, ..., e_N\}$ of \mathbb{R}^N . Since X_n takes only a finite number of values we may write

$$\alpha(X_k) = (\alpha(e_1), ..., \alpha(e_N)) = (\alpha_1, ..., \alpha_N)) \stackrel{\Delta}{=} \boldsymbol{\alpha}.$$

Therefore $\alpha(X_k) = \langle \boldsymbol{\alpha}, X_k \rangle$. Here $\langle ., . \rangle$ denotes the inner product in \mathbb{R}^N . Let's assume the process X is a Markov chain with semimartingale representation [9, 10].

$$X_k = AX_{k-1} + M_k \tag{3}$$

where $\{M_k\}_{k\in\mathbb{N}}$ is a sequence of martingale increments with respect to the complete filtration generated by *X* and *A* denotes the probability transition matrix of the Markov chain *X*.

A useful and simple model for a noisy observation of x_k is to suppose it is given as a linear function of x_k plus a random «noise» term. That is, we suppose that for some real numbers c_k and positive real numbers d_k our observations have the form

$$y_k = c_k x_k + d_k w_k. aga{4}$$

We shall also write $\{\mathcal{Y}_k\}, k \in \mathbb{N}$ for the complete filtration generated by $\{y_0, y_1, ..., y_k\}$.

Using measure change techniques we shall derive a recursive expression for the conditional distribution of x_k given \mathcal{Y}_k .

Recursive estimation. Initially we suppose all processes are defined on an «ideal» probability space $(\Omega, \mathcal{F}, \overline{P})$; then under a new probability measure *P*, to be defined, the model dynamics (2) and (4) will hold.

Suppose that under *P*:

1) $\{x_k\}, k \in \mathbb{N}$ is an i.i.d. sequence with density function $\phi(x)$ with support in \mathbb{Z}_+ ;

2) $\{y_k\}, k \in \mathbb{N}$ is an i.i.d. N(0, 1) sequence with density function

$$\psi(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}.$$

For l = 0, $\overline{\lambda}_0 = \frac{\psi(d_0^{-1}(y_0 - c_0 x_0))}{d_0 \psi(y_0)}$ and for l = 1, 2, ... define

$$\bar{\lambda}_{l} = \frac{\phi(x_{l} - \langle \boldsymbol{\alpha}, X_{l-1} \rangle \circ x_{l-1}) \psi(d_{l}^{-1}(y_{l} - c_{l}x_{l}))}{d_{l}\phi(x_{l}) \psi(y_{l})},$$
(5)

$$\overline{\Lambda}_k = \prod_{l=0}^k \overline{\lambda}_l.$$
(6)

Let \mathcal{G}_k be the complete σ -field generated by $\{x_0, x_1, ..., x_k, \langle \alpha, X_0 \rangle \circ x_0, ...$..., $\langle \alpha, X_k \rangle \circ x_k, y_0, y_1, ..., y_k \}$ for $k \in \mathbb{N}$. Lemma 1. The process $\{\overline{\Lambda}_k\}, k \in \mathbb{N}$ is a \overline{P} -martingale with respect to the fil-

tration $\{\mathcal{G}_k\}, k \in \mathbb{N}$.

Proof. Since $\overline{\Lambda}_k$ is \mathcal{G}_k -measurable $\overline{E}[\overline{\Lambda}_{k+1}|\mathcal{G}_k] = \overline{\Lambda}_k \overline{E}[\overline{\Lambda}_{k+1}|\mathcal{G}_k]$. Therefore we must show that $\overline{E} [\overline{\Lambda}_{k+1} | \mathcal{G}_k] = 1$:

$$\overline{E}\left[\overline{\lambda}_{k+1}|\mathcal{G}_{k}\right] = \overline{E}\left[\frac{\phi(x_{k+1}-\langle \boldsymbol{\alpha}, X_{k}\rangle \circ x_{k})\psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x_{k+1}))}{d_{k+1}\phi(x_{k+1})\psi(y_{k+1})}|\mathcal{G}_{k}\right] = \overline{E}\left[\frac{\phi(x_{k+1}-\langle \boldsymbol{\alpha}, X_{k}\rangle \circ x_{k})}{\phi(x_{k+1})}\overline{E}\left[\frac{\psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x_{k+1}))}{d_{k+1}\psi(y_{k+1})}|\mathcal{G}_{k}, x_{k+1}\right]|\mathcal{G}_{k}\right].$$

Now,

$$\overline{E}\left[\frac{\psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x_{k+1}))}{d_{k+1}\psi(y_{k+1})}|\mathcal{G}_{k},x_{k+1}\right] = \int_{\mathbb{R}} \frac{\psi(d_{k+1}^{-1}(y-c_{k+1}x_{k+1}))}{d_{k+1}\psi(y)}\psi(y)\,dy = 1$$

and

$$\overline{E}\left[\frac{\phi(x_{k+1}-\langle \boldsymbol{\alpha}, X_k \rangle \circ x_k)}{\phi(x_{k+1})} | \mathcal{G}_k\right] = \overline{E}\left[\sum_{x \in \mathbb{Z}_+} \frac{\phi(x-\langle \boldsymbol{\alpha}, X_k \rangle \circ x_k)}{\phi(x)} \phi(x) | \mathcal{G}_k\right] = \sum_{u \in \mathbb{Z}_+} \phi(u) = 1.$$

Define P on $\{\Omega, \mathcal{F}\}$ by setting the restriction of the Radon—Nykodim derivative $\frac{dP}{d\overline{P}}$ to \mathcal{G}_k equal to $\overline{\lambda}_k$. Then:

Lemma 2. $\{v_k\}, k \in \mathbb{N}$ is an i.i.d. sequence with density function $\phi(x)$ with support in \mathbb{Z}_+ and $\{w_k\}, k \in \mathbb{N}$ are i.i.d. N(0, 1) sequences of random variables, where

$$v_{k+1} \stackrel{\Delta}{=} (x_{k+1} - \langle \boldsymbol{\alpha}, X_k \rangle \circ x_k),$$
$$w_k \stackrel{\Delta}{=} (d_k^{-1} (y_k - c_k x_k)).$$

P r o o f. Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are «test» functions (i.e. measurable functions with compact support). Then with E (resp. \overline{E}) denoting expectation under P (resp. \overline{P}) and using Bayes' Theorem [9, 10]

$$E[f(v_{k+1})g(w_{k+1})|\mathcal{G}_{k}] = \frac{\overline{\Lambda_{k}\overline{E}}[\overline{\lambda}_{k+1}f(v_{k+1})g(w_{k+1})|\mathcal{G}_{k}]}{\overline{\Lambda_{k}\overline{E}}[\overline{\lambda}_{k+1}|\mathcal{G}_{k}]} = \overline{E}[\overline{\lambda}_{k+1}f(v_{k+1})g(w_{k+1})|\mathcal{G}_{k}],$$

where the last equality follows from Lemma 1. Consequently

$$E[f(v_{k+1})g(w_{k+1})|\mathcal{G}_{k}] = \overline{E}[\overline{\lambda}_{k+1}f(v_{k+1})g(w_{k+1})|\mathcal{G}_{k}] =$$

$$= \overline{E}\left[\frac{\phi(x_{k+1} - \langle \boldsymbol{\alpha}, X_{k} \rangle \circ x_{k})\psi(d_{k+1}^{-1}(y_{k+1} - c_{k+1}x_{k+1}))}{d\phi(x_{k+1})\psi(y_{k+1})}\right] \times$$

$$\times f(x_{k+1} - \langle \boldsymbol{\alpha}, X_{k} \rangle \circ x_{k})g(d_{k+1}^{-1}(y_{k+1} - c_{k+1}x_{k+1}))|\mathcal{G}_{k}] =$$

$$= \overline{E}\left[\frac{\phi(x_{k+1} - \langle \boldsymbol{\alpha}, X_{k} \rangle \circ x_{k})}{\phi(x_{k+1})}f(x_{k+1} - \langle \boldsymbol{\alpha}, X_{k} \rangle \circ x_{k}) \times \overline{E}\left[\frac{\psi(d_{k+1}^{-1}(y_{k+1} - c_{k+1}x_{k+1}))}{d_{k+1}\psi(y_{k+1})}g(d_{k+1}^{-1}(y_{k+1} - c_{k+1}x_{k+1}))|\mathcal{G}_{k}, x_{k+1}\right]|\mathcal{G}_{k}\right]$$

Now

 \times

$$\overline{E}\left[\frac{\psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x_{k+1}))}{d_{k+1}\psi(y_{k+1})}g(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x_{k+1}))|\mathcal{G}_{k}, x_{k+1}\right] = \int_{\mathbb{R}} \frac{\psi(d_{k+1}^{-1}(y-cx_{k+1}))}{d_{k+1}\psi(y)}\psi(y)g(d_{k+1}^{-1}(y-c_{k+1}x_{k+1}))dy = \int_{\mathbb{R}} \psi(u)g(u)du$$

ISSN 0204-3572. Electronic Modeling. 2007. V. 29. № 5

and

$$\overline{E}\left[\frac{\phi(x_{k+1} - \langle \boldsymbol{\alpha}, X_k \rangle \circ x_k)}{\phi(x_{k+1})} f(x_{k+1} - \langle \boldsymbol{\alpha}, X_k \rangle \circ x_k) | \mathcal{G}_k\right] = \overline{E}\left[\sum_{x \in \mathbb{Z}_+} \frac{\phi(x - \langle \boldsymbol{\alpha}, X_k \rangle \circ x_k)}{\phi(x)} \phi(x) f(x - \langle \boldsymbol{\alpha}, X_k \rangle \circ x_k) | \mathcal{G}_k\right] = \sum_{x \in \mathbb{Z}_+} \phi(z) f(z)$$

Therefore $E[f(v_{k+1})g(w_{k+1})|\mathcal{G}_k] = \sum_{x \in \mathbb{Z}_+} \phi(z)f(z) \int_{\mathbb{R}} \psi(u)g(u)du$ and the lemma is

proved.

Using Bayes' Theorem [10]

$$E[I(x_{k}=x)X_{k}|\mathcal{Y}_{k}] = \frac{\overline{E}[\overline{\Lambda}_{k}I(x_{k}=x)X_{k}|\mathcal{Y}_{k}]}{\overline{E}[\overline{\Lambda}_{k}|\mathcal{Y}_{k}]},$$
(7)

where \overline{E} (resp. *E*) denotes expectations with respect to \overline{P} (resp. *P*). Consider the unnormalized, conditional expectation which is the numerator of (7) and write

$$\overline{E}\left[\overline{\Lambda}_k I(x_k = x) X_k | \mathcal{Y}_k\right] = q_k(x) = (q_k^1(x), ..., q_k^N(x))'.$$
(8)

If $p_k(.)$ denotes the normalized conditional density, such that $E[I(x_k = x) X_k | \mathcal{Y}_k] = p_k(x)$, then from (7) we see that

$$p_k(x) = q_k(x) \left[\sum_{z} q_k(z)\right]^{-1}$$
 for $x \in \mathbb{Z}_+$, $k \in \mathbb{N}$.

Then we have the following result.

Theorem 1. The measure-valued process q satisfies the recursion

$$q_{k+1}(x) = A \sum_{z \in \mathbb{Z}_+} \mathbf{B}(z, x) q_k(z),$$

where $\mathbf{B}(z,x)$ is a diagonal matrix with entries

$$\frac{\psi(d^{-1}(y_{k+1}-cx))}{d\psi(y_{k+1})}\sum_{r=0}^{z}\phi(x-r)\binom{z}{r}\alpha_{i}^{r}(1-\alpha_{i})^{z-r}$$

P r o o f. In view of (3), (5) and (6)

$$\overline{E}\left[\overline{\Lambda}_k \overline{\lambda}_{k+1} I(x_{k+1} = x) X_{k+1} \middle| \mathcal{Y}_{k+1}\right] =$$

$$=\overline{E}\left[\overline{\Lambda}_{k}\frac{\phi(x-\langle \boldsymbol{\alpha}, X_{k}\rangle\circ x_{k})\psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x))}{d_{k+1}\phi(x)\psi(y_{k+1})}\phi(x)(AX_{k}+M_{k+1}|\mathcal{Y}_{k+1}]\right]=$$

37

$$= \frac{\Psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x))}{d_{k+1}\Psi(y_{k+1})} \sum_{i=1}^{N} \overline{E} \overline{\Lambda}_{k} \phi(x-\alpha_{i} \circ x_{k}) \langle X_{k}, e_{i} \rangle |\mathcal{Y}_{k+1}] A e_{i} =$$

$$= \frac{\Psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x))}{d_{k+1}\Psi(y_{k+1})} \times$$

$$\times \sum_{i=1}^{N} \overline{E} \left[\overline{\Lambda}_{k} \sum_{r=0}^{x_{k}} \phi(x-r) \binom{x_{k}}{r} \alpha_{i}^{r} (1-\alpha_{i})^{x_{k}-r} \langle X_{k}, e_{i} \rangle |\mathcal{Y}_{k+1}] \right] A e_{i} =$$

$$= \frac{\Psi(d_{k+1}^{-1}(y_{k+1}-c_{k+1}x))}{d_{k+1}\Psi(y_{k+1})} \times$$

$$\times \sum_{i=1}^{N} \overline{E} \left[\overline{\Lambda}_{k} \sum_{z \in \mathbb{Z}_{+}} \sum_{r=0}^{z} \phi(x-r) \binom{z}{r} \alpha_{i}^{r} (1-\alpha_{i})^{z-r} I(x_{k}=z) \langle X_{k}, e_{i} \rangle |\mathcal{Y}_{k}] \right] A e_{i}.$$

The last equality follows from the fact that x_{k+1} has distribution ϕ and is independent of everything else under \overline{P} . Also, note that given y_{k+1} we condition only on \mathcal{Y}_k to get an expression similar to notation (8), that is,

$$\overline{E}\left[\overline{\Lambda}_{k+1}I(x_{k+1}=x)X_{k+1}|\mathcal{Y}_{k+1}\right] =$$

$$= \frac{\psi\left(d^{-1}(y_{k+1}-cx)\right)}{d\psi\left(y_{k+1}\right)}\sum_{i=1}^{N}\left\langle\sum_{z\in\mathbb{Z}_{+}}\sum_{r=0}^{z}\phi\left(x-r\right)\binom{z}{r}\alpha_{i}^{r}(1-\alpha_{i})^{z-r}q_{k}(z)e_{i}\right\rangle Ae_{i} =$$

$$= A\sum_{z\in\mathbb{Z}_{+}}\mathbf{B}\left(z,x\right)q_{k}(z),$$

where $\mathbf{B}(z,x)$ is a diagonal matrix with entries

$$\frac{\psi(d^{-1}(y_{k+1}-cx))}{d\psi(y_{k+1})}\sum_{r=0}^{z}\phi(x-r)\binom{z}{r}\alpha_{i}^{r}(1-\alpha_{i})^{z-r}.$$

Which finishes the proof.

Vector dynamics. Consider a system whose state at time k = 0, 1, 2, ..., is $X_k \in \mathbb{Z}_+^m$ and which can be observed only indirectly through another process $Y_k \in \mathbb{R}^d$.

Let (Ω, \mathcal{F}, P) be a probability space upon which V_k and W_k are sequences of random variables such that W_k is normally distributed with means 0 and covariance identity matrices $I_{d\times d}$ and V_k has probability distribution ϕ with support in \mathbb{Z}_+^m . Assume that $D_k, k \ge 0$, are non singular matrices. Let $\{\mathcal{F}_k\}, k \in \mathbb{N}$, be the complete filtration generated by $\{X_0, X_1, ..., X_k\}$.

Now we wish to generalize the operator \circ to vector-valued random variables with non-negative integer-valued components.

For any vector $X = (X^1, ..., X^m)'$ in \mathbb{Z}_+^m and any vector $\boldsymbol{\alpha}^i = (\alpha_1^i, ..., \alpha_m^i)'$ such that $\alpha_j^i > 0$ and $\sum_i \alpha_j^i = 1$ define

$$\boldsymbol{\alpha}^{i} \boldsymbol{\varnothing} X^{i} = (\alpha_{1}^{i} \boldsymbol{\varnothing} X^{i}, ..., \alpha_{m}^{i} \boldsymbol{\varnothing} X^{i})' = \left(\sum_{j=1}^{Z_{1}^{i}} Y_{1j}^{i}, ..., \sum_{j=1}^{Z_{m}^{i}} Y_{mj}^{i}\right),$$
(9)

where Z_{ℓ}^{i} , $i, \ell = 1, ..., m$, are non-negative, integer-valued random variables such that $\sum_{\ell=1}^{m} Z_{\ell}^{i} = X^{i}$. For each $i, \ell, Y_{\ell 1}^{i}, ..., Y_{\ell m}^{i}$, are i.i.d. nonnegative, integer-valued random variables with probability function ρ_{ℓ}^{i} .

Let

$$A = (\alpha^{1}, ..., \alpha^{m}), \quad A \oslash X = \sum_{i=1}^{m} \alpha^{i} \oslash X^{i}.$$
⁽¹⁰⁾

One possible interpretation of this model is that $X = (X^1, ..., X^m)'$ represents a population composed of *m* distinct groups of, say, cells. Some time later, each cell in the population, regardless to which group it belongs, can mutate and divide itself into a number of new cells of any of the *m* types. For instance, a cell of type 1 may mutate with probability α_2^1 to produce through division a new generation of cells of type 2. Let $\alpha_2^1 \bigotimes X^1 = \sum_{j=1}^{Z_2^1} Y_{2j}^1$ is the (random) number of new

cells of type 2 with Z_2^1 parents of type 1. In other words, for $j = 1, ..., Z_2^1$, the *j*-th parent cell of type 1 gave birth to Y_{2j}^1 new cells of type 2. Here Y_{2j}^1 is a random variable with probability function ρ_2^1 with support in \mathbb{Z}_+ .

The state and observations of the system are given by the dynamics

$$X_{k+1} = A_k \varnothing X_k + V_{k+1} \in \mathbb{Z}_+^m, \tag{11}$$

$$Y_k = C_k X_k + D_k W_k \in \mathbb{R}^d.$$
⁽¹²⁾

Here C_k is a matrix of appropriate dimensions and $A_k \oslash X_k$ is defined in (10).

We write again $\{\mathcal{Y}_k\}, k \in \mathbb{N}$, for the complete filtration generated by the observed data $\{Y_0, Y_1, ..., Y_k\}$ up to time k. Using measure change techniques we shall derive a recursive expression for the conditional distribution of X_k given \mathcal{Y}_k .

Recursive estimation. Initially we suppose all processes are defined on an «ideal» probability space $(\Omega, \mathcal{F}, \overline{P})$; then under a new probability measure P, to be defined, the model dynamics (11) and (12) will hold.

Suppose that under \overline{P} :

1) $\{X_k\}, k \in \mathbb{N}$, is an i.i.d. sequence with probability function $\phi(x)$ defined on \mathbb{Z}_{+}^{m} ;

2) $\{Y_k\}, k \in \mathbb{N}$, is an i.i.d. $N(0, I_{d \times d})$ sequence with density function $\Psi(y) = \frac{1}{(2\pi)^{d/2}} e^{-y'y/2}.$

For any square matrix B write |B| for the absolute value of its determinant. $M(D^{-1}(Y - C X))$

For
$$l = 0$$
, $\overline{\lambda}_0 = \frac{\Psi(D_0 - (I_0 - C_0 X_0))}{|D_0| \Psi(Y_0)}$ and for $l = 1, 2, ...$ define
 $\overline{\lambda}_l = \frac{\Phi(X_l - A_{l-1} \oslash X_{l-1}) \Psi(D_l^{-1}(Y_l - C_l X_l))}{|D_l| \Phi(X_l) \Psi(Y_l)},$
 $\overline{\lambda}_k = \prod_{l=0}^k \overline{\lambda}_l.$

Let $\{\mathcal{G}_k\}$ be the complete σ -field generated by $\{X_0, X_1, ..., X_k, Y_0, Y_1, ..., Y_k\}$ for $k \in \mathbb{N}$.

The process $\{\overline{\Lambda}_k\}, k \in \mathbb{N}$, is an \overline{P} -martingale with respect to the filtration $\{\mathcal{G}_k\}$. Define P on $\{\Omega, \mathcal{F}\}$ by setting the restriction of the Radon—Nykodim derivative $\frac{dP}{d\overline{D}}$ to \mathcal{G}_k equal to $\overline{\Lambda}_k$. It can be shown that on $\{\Omega, \mathcal{F}\}$ and under P, W_k is

normally distributed with means 0 and covariance identity matrix $I_{d \times d}$, and V_k has probability function ϕ defined on \mathbb{Z}_+^m where

$$V_{k+1} \stackrel{\Delta}{=} X_{k+1} - A_k \oslash X_k, \ W_k \stackrel{\Delta}{=} D_k^{-1} (Y_k - C_k X_k),$$

write

$$\overline{E}\left[\Lambda_k I\left(x_k=x\right)X_k \middle| \mathcal{Y}_k\right] = q_n(x).$$

Then we have the following result.

Theorem 2. For $k \ge 0$

$$q_{k+1}(x) = \frac{\psi(D_{k+1}^{-1}(Y_{k+1} - C_{k+1}x))}{|D_{k+1}|\psi(Y_{k+1})} \times \sum_{u \in \mathbb{Z}_{+}^{m}} \sum_{i=1}^{m} \sum_{z_{1}^{i} + \dots + z_{m}^{i} = u^{i}} \prod_{i=1}^{m} {x_{k}^{i} \choose z_{1}^{i} \dots z_{m}^{i}} (\alpha_{1}^{i})^{z_{1}^{i}} \dots (\alpha_{m}^{i})^{z_{m}^{i}} \times (\alpha_{m}^{i})^{z_{m}^{i}}$$

ISSN 0204-3572. Electronic Modeling. 2007. V. 29. № 5

$$\times \phi \left(x - \sum_{i=1}^{m} \left(\sum_{j=1}^{z_{1}^{i}} y_{1j}^{i}, \dots, \sum_{j=1}^{z_{m}^{i}} y_{mj}^{i} \right)' \right) \prod_{i,\ell=1}^{m} \prod_{j=1}^{z_{\ell}^{i}} \rho_{\ell}^{i}(y_{\ell j}^{i}) q_{k}(u).$$

P r o o f. The proof is similar to the scalar case and is skipped.

A sampling observation model. The state of the system is again given by the dynamics in (11). Write $N_k = \sum_{i=1}^m X_k^i$ and $\Pi(N_k)$ for the set of all partitions of N_k into m summands; that is, $x \in \Pi(N_k)$ if $x = (x^1, x^2, ..., x^m)$ where each x^i is a non-negative integer and $x^1 + x^2 + ... + x^m = N_k$. In this section we assume that the total number of individual N_k is approximately known but it is practically very difficult to measure directly their distribution between the *m* types. Therefore the population is sampled by withdrawing, (with replacement), at each time k, n individuals and observing to which type they belong. That is, at each time *k* a sample

$$Y_k = (Y_k^1, Y_k^2, ..., Y_k^m) = \Pi(n)$$

is obtained, where $\Pi(n)$ is the set of partitions of *n*.

We assume that

$$P(Y_{k} = y | X_{k} = x) = {\binom{n}{y^{1} y^{2} \dots y^{m}}} {\left(\frac{x^{1}}{N_{k}}\right)^{y^{1}}} {\left(\frac{x^{2}}{N_{k}}\right)^{y^{2}}} \dots {\left(\frac{x^{m}}{N_{k}}\right)^{y^{m}}}.$$
 (13)

Clearly this sequence of samples, Y(0), Y(1), Y(2), ... enables us to revise our estimates of the state X_k .

Recursive estimates. Initially we suppose all processes are defined on an «ideal» probability space $(\Omega, \mathcal{F}, \overline{P})$; then under a new probability measure *P*, to be defined, the model dynamics (11) and (13) will hold.

Suppose that under \overline{P} :

1) {*X_k*}, *k* \in \mathbb{N} , is an i.i.d. sequence with probability function $\boldsymbol{\xi}(x)$ defined on \mathbb{Z}_{+}^{m} ;

2) $\{Y_k\}, k \in \mathbb{N}$, is an i.i.d. sequence such that for $y \in \Pi(n)$,

$$\overline{P}(Y_k = y | \mathcal{G}_k) = \binom{n}{y^1 y^2 \dots y^m} \left(\frac{1}{m}\right)^n.$$

For l = 0, $\overline{\lambda}_0 = 1$ and for l = 1, 2, ... define

$$\overline{\lambda}_{l} = \frac{\boldsymbol{\xi} \left(X_{l} - A_{l-1} \oslash X_{l-1} \right)}{\boldsymbol{\xi} \left(X_{l} \right)} m^{n} \left(\frac{X_{k}^{1}}{N_{k}} \right)^{Y_{k}^{*}} \left(\frac{X_{k}^{2}}{N_{k}} \right)^{Y_{k}^{*}} \dots \left(\frac{X_{k}^{m}}{N_{k}} \right)^{Y_{k}^{m}}, \ \overline{\lambda}_{k} = \prod_{l=0}^{k} \overline{\lambda}_{l}.$$

Let $\{\mathcal{G}_k\}$ be the complete σ -field generated by $\{X_0, X_1, ..., X_k, Y_0, Y_1, ..., Y_k\}$ for $k \in \mathbb{N}$. The process $\{\overline{\Lambda}_k\}, k \in \mathbb{N}$, is an \overline{P} -martingale with respect to the filtration $\{\mathcal{G}_k\}$.

Define *P* on $\{\Omega, \mathcal{F}\}$ by setting the restriction of the Radon—Nykodim derivative $\frac{dP}{d\overline{P}}$ to \mathcal{G}_k equal to $\overline{\Lambda}_k$. It can be shown that on $\{\Omega, \mathcal{F}\}$ and under *P*, V_k has

probability function $\boldsymbol{\xi}(x)$ defined on \mathbb{Z}_{+}^{m} where $V_{k+1} = X_{k+1} - A_{k} \oslash X_{k}$ and (13) is true. For $r \in \Pi(N_{k+1})$ write $q_{k+1}(r) = \overline{E} [\overline{\Lambda}_{k+1} I(X_{k+1} = r) | \mathcal{Y}_{k+1}]$.

Note that

$$\sum_{r\in\Pi(N_k)} I(X_{k+1}=r) = 1$$

so that

$$\sum_{\in \Pi(N_k)} q_{k+1}(r) = \overline{E} \left[\overline{\Lambda}_{k+1} \middle| \mathcal{Y}_{k+1} \right].$$

We then have the following recursion.

r

Theorem 3. If
$$Y_k = (\tilde{Y}_k^1, Y_k^2, ..., Y_k^m) = (y^1, y^2, ..., y^m) \in \Pi(N_k)$$
,

$$q_{k}(r) = m^{n} \left(\frac{r^{1}}{N_{k}}\right)^{y^{1}} \left(\frac{r^{2}}{N_{k}}\right)^{y^{2}} \dots \left(\frac{r^{m}}{N_{k}}\right)^{y^{m}} \times \\ \times \sum_{s \in \Pi(N_{k-1})} \sum_{i=1}^{m} \sum_{z_{1}^{i} + \dots + z_{m}^{i} = s^{i}} \prod_{i=1}^{m} \left(\frac{s^{i}}{z_{1}^{i} \dots z_{m}^{i}}\right) (\alpha_{1}^{i})^{z_{1}^{i}} \dots (\alpha_{m}^{i})^{z_{m}^{i}} \times \\ \times \xi \left(r - \sum_{i=1}^{m} \left(\sum_{j=1}^{z_{1}^{i}} y_{1j}^{i}, \dots, \sum_{j=1}^{z_{m}^{i}} y_{mj}^{i}\right)'\right) \prod_{i,\ell=1}^{m} \prod_{j=1}^{z_{\ell}^{i}} \rho_{\ell}^{i}(y_{\ell j}^{i}) q_{k-1}(s).$$

(Note we take $0^0 = 1$.)

Proof.

$$q_{k}(r) = \overline{E} \left[\overline{\Lambda}_{k}I\left(X_{k}=r\right) \middle| \mathcal{Y}_{k} \right] =$$

$$= \overline{E} \left[\overline{\Lambda}_{k}I\left(X_{k}=r\right) \middle| \mathcal{Y}_{k-1}, Y_{k}=\left(y^{1}, y^{2}, ..., y^{m}\right)\right] =$$

$$= \overline{E} \left[\overline{\Lambda}_{k-1}\overline{\lambda}_{k}I\left(X_{k}=r\right) \middle| \mathcal{Y}_{k-1}, Y_{k}=\left(y^{1}, y^{2}, ..., y^{m}\right)\right] =$$

$$= m^{n} \left(\frac{r^{1}}{N_{k}}\right)^{y^{1}} \left(\frac{r^{2}}{N_{k}}\right)^{y^{2}} ... \left(\frac{r^{m}}{N_{k}}\right)^{y^{m}} \overline{E} \left[\overline{\Lambda}_{k-1}I\left(X_{k}=r\right) \frac{\boldsymbol{\xi}(r-A_{k} \otimes X_{k-1})}{\boldsymbol{\xi}(r)} \middle| \mathcal{Y}_{k-1}\right] =$$

ISSN 0204-3572. Electronic Modeling. 2007. V. 29. № 5

$$=m^{n}\left(\frac{r^{1}}{N_{k}}\right)^{y^{1}}\left(\frac{r^{2}}{N_{k}}\right)^{y^{2}}...\left(\frac{r^{m}}{N_{k}}\right)^{y^{m}}\overline{E}\left[\overline{\Lambda}_{k-1}\sum_{s\in\Pi(N_{k-1})}\boldsymbol{\xi}(r-A_{k}\boldsymbol{\varnothing}s)I(X_{k-1}=s)|\mathcal{Y}_{k-1}\right],$$

using the definition of the operator \emptyset in (9) and (10) yields the result. *Remark.*

$$P(X_k = r)|\mathcal{Y}_k| = E[I(X_k = r)|\mathcal{Y}_k] = \frac{q_k(r)}{\sum_{s \in \Pi(N_k)} q_k(s)}$$

To obtain the expected value of X_k given the observations \mathcal{Y}_k we consider the vector of values $r = r^1, r^2, ..., r^m$ for any $r \in \Pi(N_k)$. Then

$$E[X_k|\mathcal{Y}_k] = \frac{\sum_{r \in \Pi(N_k)} q_k(r) r}{\sum_{s \in \Pi(N_k)} q_k(s)}.$$

Аналіз часових послідовностей відліків — напрям, що інтенсивно розвивається. Такий аналіз широко використовується для базових цілочисельних часових послідовностей, з якими не можна задовільно працювати у рамках класичних послідовностей гаусова типу. Отримано рекурсивні фільтри для частково спостерігаємих дискретизованих часових послідовностей. Показано, що ці процеси регулюються проріжуючими біноміальними та поліноміальними операторами.

- Aly A. A, Bouzar N. On some integer-valued autoregressive moving average models// J. of Multivariate Analysis. — 1994. — 50. — P. 132—151.
- Al-Osh M. N., Alzaid A. A. First order integer-valued autoregressive (INAR(1)) process// J. Time Series Analysis. — 1987. — 8. — P. 261—275.
- 3. *Freeland R. K., McCabe B. P. M.* Analysis of low count time series data by poisson autoregression// Ibid. 2004. 25. No 5. P. 701—722.
- Jung Robert C., Tremayne A. R. Testing for serial dependence in time series models of counts// Ibid. — 2003. — Vol. 24. — P. 65.
- McKenzie E. Some simple models for discrete variate time series// Water Res Bull.— 1985.— 21.— P. 645—650.
- McKenzie E. Some ARMA models for dependent sequences of Poisson counts// Advances in Applied Probability. — 1988. — 20. — No 44. — P. 822—835.
- Iain L. MacDonald Hidden Markov and other models for Discrete-Valued Time Series. Chapman & Hall, 1997.
- Dion J. -P., Gauthier G., Latour A. Branching Processes with Immigration and Integer-Valued Time Series// Serdica Mathematical J. — 1995. — Vol. 21, No 2.
- Aggoun L., Elliott R.J. Measure Theory and Filtering: Introduction with Applications// Cambridge Series In Statistical and Probabilistic Mathematics.—2004.
- Elliot R. J., Aggoun L., Moore J. B. Hidden Markov Models: Estimation and Control// Applications of Mathematics. 1995. No. 29.

Поступила 21.12.06