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The Neural Control of a Robot
in the Conditions of Movable Obstacles

The proposed concept of robot control assisting uses a neural network, whose operation relies on
the activation of neurons delimiting a path from the source to the target with evading movable ob-
stacles The complexity of the control algorithm is O (n). The proposed adjustment of neuron sen-
sitivity using a two-element pencils of planes passing over the shortest path of the robot makes it
possible to obtain a set of solutions with simultaneous classification in terms of a very important
path length criterion.

[IpennoskeHa KOHIENINS COMPOBOXICHUS YIPABICHHS POOOTOM C HCIIOIb30BAaHUEM HEHpPOH-
HOW ceTu, pabdoTa KOTOpOW OCHOBAaHA HAa AKTHBHM3ALIMU HEHPOHOB, ONPEACISIONIUX MYyTh OT
WCXOIHOW TOYKH JI0 LIEJIU ¢ YKIIOHEHHEM OT TTOJBIKHBIX PersTcTBHN. CI0XKHOCTD alropuTMa
ynpasienust cocrapisier O (n). [IpeanoxkeHHas HacTpoiKka HEHPOHHON YyBCTBHTEIBHOCTH C
WCIOJIb30BAaHUEM JIBYXJIEMEHTHBIX ITyYKOB IJIOCKOCTEH, MEpeceKaroluX KpaT4alni 1myTh
poGoTa, TO3BOJISIET MOJIYYUTh MHOXKECTBO PEUICHUI C OJHOBPEMEHHON KilacCH(UKAIUen 1o
KPUTEPHIO JJTUHBI ITyTH.
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The utilization of the neural structure for control is a unified control system en-
abling the dynamic and easy determination of weights and thresholds. The effec-
tiveness of using different methods of aggregation can be analyzed. The model
for establishing the values of weights and activation thresholds of aggregating
neurons relies on the position of the robot and the location of the line connecting
the robot’s starting and target points (Fig. 1).

The prediction obstacle position at the moment of robot approach enables
this situation to be allowed for in the threshold forming planes (Fig.2). The pur-
pose of the study is to examine the algorithmic possibilities of the realization of
the control model with the use of a neural structure of adjustable neuron
activation levels.

The mechanism of formation of neuron activation thresholds. The value
of neuron activation can be defined using two planes, S1, 52, which form a pencil
(have the common edge PK). The equations of the two planes (Fig. 3) can be de-

Y

fined in an intercept form: §+Z+£ =1. The calculation of the values of a, b, ¢
a c
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Fig. 1. Graphical illustration of the method of determining the neuron activation threshold #(i,):
h—quantity controlling the activation threshold levels; D — area available for robot peregrination
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Fig. 2. Taking account of obstacle prediction in the formation of thresholds (maximum)
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Fig. 3. Plane in an intercept form
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Fig. 4. Graphical illustration of the location of neurons for the determination of their activation
thresholds: x = id, 1<i<In; y =j-d;1<i<Im ; Inis anumber of neurons in a layer; /m is a num-
ber of layers

will be carried out in the simplest possible way by using the equation of the
straight line connecting the starting and the end points, P, K, of the robot’s route.
The equation of this straight line is written as follows:

B _Yy(K)=y(P)
y=y(P) 7X(K)_X(P)(x x(P)).

The determination of the value of the coefficient a only requires the substitution
of the value of y =0
a=x(P)- 28X ), M
y(K)=y(P)
whereas for the calculation of b, we substitute x = 0 to obtain:
K)—y(P
b=y )Y KB py
x (K)=x(P)
while the value ¢ = A. Ultimately, the intercept equation of the plane passing
through two points, P and K, will have the form of
© ST
x(K)—x -
x(P) =2y (P) y(P) -2 (P)
y(K)=y(P) x(K)-x(P)
So, to calculate the threshold value, we can use the following equation:
xh N yh
x(K)=x(P K)-y(P ’
K (P) Ly 2Ky P
y(K)=y(P) x(K)=x(P)

where x =i-d, y = j-d, d is a grid size.

z=h—
x(P)
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Fig. 5. Selected types of aggregation that can be employed to the «neural simulation» of the ro-
bot working space

Relating the neuron location to the coordinates x and y is not complicated,
1.e. it is sufficient to perform some simple recalculations that are related to the
situation shown in Fig. 4.

The simulation of neural structure operation requires the methods of aggrega-
tion of signals coming to each neuron to be specified more precisely. These can be
the operations of summation of input signals or mini-max operations (Fig. 5).

Inter-layer communication. The number of neural network layers Im de-
termines the number of iterations of inter-layer transfers, which will be equal to
Im— 1. The algorithm for the operation of the neural structure can be represented
in the form of a block diagram, as in Fig. 6.

Algorithm description:

0. — data input: number of layers (Im); number of neuron in a layer (In); in-
put signals (s(i)); beginning and end of the route (coordinates x, y), respectively;
parameter of neuron response sensitivity (h);

1. 2. 3.— determination of the values of neuron activation thresholds (z (i,j),
where 1 is the number of the layer, j is the number of the node. We use equation (2);

4. 5. 6. — determination of (or correction to) the values of weights, for ex-
ample depending on the velocity of approach of obstacles (the proposal will be
presented in the next section);

7.8.9.10. 11. 12. 13. — simulation of neural network operation:

7. — transition to subsequent layers;

8. — location of the neuron sending signals (the k-th layer);

9. — location of the neuron receiving signals (the k + 1 layer);

10. — aggregation of signals (summation is chosen);,

11.— condition for the activation of the neuron of the coordinates j, k + 1;

12. 13. — result of neuron activation;

14. 15. — transfer of the signal to the subsequent layer.

The algorithm can be implemented in either a static (one-off transition: for-
ward-propagation) or a dynamic (change in the robot and obstacles position with
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Fig. 6. Algorithm of the inter-layer communication of the neural network indicating the robot
path: k is a number of the layer from which the transferred signal originates; i is a number of the
neuron transferring signals; j is a number of the neuron receiving signals; a (j, k) is a size of the
aggregated signal in the neuron of the number j of the k-th layer

each «turnaround»: back-propagation) variant. The variant with turnarounds
will also require correction to the weights prior to each return. In the static vari-
ant, we will use the algorithm of the prediction of obstacle position at the time of
the robot approaching to the obstacle.

Determination of the values of weights in respect to the relative position
and velocity of motion of the obstacle in relation to the robot. The basis for
the determination of the threat resulting from the possibility of a collision is the
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Fig. 7. Relative position of the robot and the obstacle
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Fig. 8. Corrections to robot and obstacles positions associated with the change in the direction of
propagation
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relativization of the situation existing between the robot and the obstacle con-
cerning their relative position and the rate of its change (Fig. 7).

The safe distance between the robot and the obstacle results from the satis-
fying of the following condition:

dist =(Or,Op)—Rr—Rp >0,

where (Or, Op) is a distance between the robot and obstacle centres

(\/ (xOr —xOp)* +(yOr —yOp)*)); Rr— maximum size of the robot, as counted

fromits center; Rp — maximum size of the obstacle, as counted from its centre.
The velocity of obstacle and robot approach can be estimated as follows:

vpr =vr-cos (ovr —ad ) —vp-cos (ovp —ad);
tg (ad)=(yOr—yOp)/(xOr—x0Op) .

The reduction of the weights of signals coming to the neurons lying within the
hazardous zone (between the robot and the obstacle) can be accomplished by
presetting the number of reduction thresholds (on condition of satisfying the re-
lationship vrp - vp < 0: the robot and the obstacle approach each other);
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w(i,j)= dist—\/(x —xO0r)? +(y —yOr)H/dist, provide that vip - vp <0,

Wi, ) = [dist—(x —xOr)2 +(y —yOr)*Ydist - wsk] - sck,

provided that vip - vp <0,

where w'(7,j) is a stepwise reduced weight of signals coming to the neuron (i, /);
wsk is a number of weight reduction thresholds; sck is a weigh correction scale,
vrp/wsk.

The effects of individual obstacles superimpose multiplicatively:

/
ew(if) =] Twe o)
k=1

where k— obstacle number; /p — number of obstacles. In the back-propagation
algorithm, after reaching the end of the robot route, a turnaround takes place (the
output signals from the last layer /k > (y(K')/ d)change the transfer direction and
become input signals, and the layer numbers change in the reverse order,
k =1lk(=Dlp, Ip <(y(P)/d)). Simultaneously with the velocity set for a single ro-
bot pass (through all important layers) we change the positions of the robot and
the obstacles after each propagation (Fig. 8).

Conclusions. The neural control of a robot allows any changes in the robot
movement environment to be taken into account flexibly and in a unified and
easy-to-accomplish manner.

The proposals concerning threshold levels and weight values should be
tested for each neural structure and the configuration of robot and obstacle
movement parameters.

The neural solutions enable the implementation of a large number of con-
cepts related to establishing the threshold and weight parameters. They reduce,
at the same time, the complexity of geometrical-kinetic analysis.

The neural algorithm in the proposed form can be combined with the ant al-
gorithm by setting the thresholds at levels allowing several solutions to be ob-
tained.

3ampoNoOHOBAaHO KOHIETIIIO CYyNPOBOAY YIPABIiHHS POOOTOM 3 BHKOPHCTaHHSIM HEHPOHHOI
Mepexi, poOdoTa K0T 0a3yeThCsi Ha aKTHBI3AIlil HEMPOHIB, 1110 BU3HAYAIOTh HIISAX BiJl BUXIAHOT
TOYKH JI0 LiNi 3 BIAXWJIEGHHSAM Bif pyxoMux nepemrkoj. CKIaJHICTh aJrOPUTMY YIPaBIIiHHS
cknanae O (n). 3ampONOHOBAaHE HACTPOIOBAHHS HEHPOHHOI YYTIMBOCTI 3 BUKOPHUCTAHHAM JIBO-
€NEeMEHTHUX ITy4KiB MUIOMIHH, IO MePEeTHHAITh HAHKOPOTIIHI IIISIX poOOTa, 103BOJIAE OTPH-
MaTu BEJIUKY KUIBKICTb PillIeHb 3 0IHOYACHOIO KIacU(iKalli€o 32 KPUTEPIEM TOBKHUHY LUIAXY.
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