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Analysis and Optimization of M/G/1 Vacation
Queueing Systems with Server Timeout

We consider a single-server vacation queueing system that operates in the following manner.

When the server returns from a vacation it observes the following rule. If there is at least one cus-

tomer in the system, the server commences service and serves exhaustively before taking another

vacation. If the server finds the system empty, it waits a fixed time c. At the expiration of this time

the server commences another vacation if no customer has arrived; otherwise, it serves

exhaustively before commencing another vacation. Analytical results are derived for the mean

waiting time in the system. The timeout scheme is shown to be a generalized scheme of which

both the single vacation and multiple vacations schemes are special cases, with c �� and c � 0 re-

spectively. The model is extended to the N-policy vacation queueing system. In both schemes we

use a linear cost model to obtain an optimal operating value of c.

Ðàññìîòðåíà îäíîñåðâåðíàÿ ñèñòåìà ìàññîâîãî îáñëóæèâàíèÿ (ÑÌÎ) ñ ïåðåðûâàìè, ðà-

áîòàþùàÿ â òàêîì ðåæèìå: ïðè âêëþ÷åíèè ñåðâåðà ïîñëå ïåðåðûâà, åñëè, ïî êðàéíåé ìåðå,

îäèí êëèåíò íàõîäèòñÿ â ñèñòåìå, ñåðâåð íà÷èíàåò îáñëóæèâàíèå è ïðîäîëæàåò åãî äî

íàñòóïëåíèÿ î÷åðåäíîãî ïåðåðûâà. Åñëè îáíàðóæèâàåòñÿ, ÷òî ñèñòåìà ïóñòà, ñåðâåð íàõî-

äèòñÿ â ðåæèìå îæèäàíèÿ ôèêñèðîâàííîå âðåìÿ ñ. Ïî èñòå÷åíèè ýòîãî âðåìåíè íàñòóïàåò

ñëåäóþùèé ïåðåðûâ â ðàáîòå ñåðâåðà, åñëè íîâûé êëèåíò íå ïîÿâèëñÿ. Â ïðîòèâíîì ñëó÷àå,

êëèåíò îáñëóæèâàåòñÿ äî íàñòóïëåíèÿ î÷åðåäíîãî ïåðåðûâà. Ïîëó÷åíû àíàëèòè÷åñêèå îöåí-

êè äëÿ ñðåäíåãî âðåìåíè îæèäàíèÿ â ñèñòåìå. Ïîêàçàíî, ÷òî ñõåìà ïðåðûâàíèé ÿâëÿåòñÿ

îáîáùåííîé ñõåìîé, â êîòîðîé åäèíè÷íàÿ è ìíîæåñòâåííàÿ ñõåìû ïðåðûâàíèé — ÷àñòíûå

ñëó÷àè ñîîòâåòñòâåííî ïðè c �� è c � 0. Ìîäåëü ðàñïðîñòðàíÿåòñÿ íà ÑÌÎ ñ N-ñòðàòåãèÿìè

ïåðåðûâîâ. Â îáåèõ ñõåìàõ èñïîëüçîâàíà ëèíåéíàÿ ìîäåëü çàòðàò äëÿ ïîëó÷åíèÿ îïòè-

ìàëüíîãî ïàðàìåòðà ñðàáàòûâàíèÿ ñ.

K e y w o r d s: vacation queueing systems, timeout policies, performance analysis, N-policy with
timeout.

Introduction. Vacation queueing systems have been extensively analyzed by

several authors. A survey of vacation queues is given in [1], and an excellent text

on the subject is [2]. There are several models of queueing systems, including the

single vacation system and the multiple vacation system. In the single vacation

queue, a server’s vacation begins whenever the system becomes empty. At the

end of the vacation, the server returns to begin serving the customers that arrived

during its vacation, if such customers exist; otherwise, it waits until a customer

arrives when a busy period commences. The time to serve customers and the du-
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ration of a vacation are assumed to be mutually independent. The multiple vaca-

tion queue operates in a manner similar to the single vacation queue with the ex-

ception that if no customers are found at the end of a vacation, the server imme-

diately commences another vacation.

A variety of problems can be modeled by the vacation queueing system.

These include machine breakdowns, maintenance in communication and com-

puter systems, and token passing local area networks. In these systems the server

becomes absent from a particular service center either because it is busy else-

where serving other customers or is unavailable due to system breakdown.

In the vacation models that have been analyzed in the literature, server time-

outs have not been considered. In this paper we consider vacation queueing sys-

tems with server timeouts. Specifically, we consider a system that operates in the

following manner. When the server has finished serving a customer and finds the

system empty, it takes a vacation whose duration is independent of both the ser-

vice time and the inter-arrival time. At the end of the vacation the server returns

to serve those customers, if any, who arrived during its vacation. It will com-

mence another vacation when the system becomes empty. If no customer arrived

during the vacation, the server waits for a fixed time c. If no customer arrives by

the end of this period, the server commences another vacation. If a customer ar-

rives before the period expires, the server commences service and serves

exhaustively before commencing another vacation.

Fig. 1 illustrates this scheme. Assume that the system has been operational

for some time and the server returns from a vacation of durationV
1

at a time la-

beled t
1

and found two customersC
1

and C
2

waiting. Before completing the ser-

vice of these customers, another customer C
3

arrives. After serving the three

customers the server takes another vacation of durationV
2
. Upon returning from

that vacation at a time t
2

it found no customer waiting. It waits for a time of dura-

tion c without any customer arriving. It thus leaves for another vacation of dura-
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Fig. 1. Vacation scheme with timeout



tionV
3

without serving a customer. It came back from the vacation at the time la-

beled t
3

and found two customers C
4

and C
5

waiting. Before completing the

service of these customers, another customer C
6

arrives. After serving these

three customers, the server takes another vacation of durationV
4
. Upon return-

ing from the vacation at the time labeled t
4

it found no waiting customers. How-

ever, before the expiration of the timeout, customer C
7

arrives to initiate another

busy period, and the process continues.

This vacation queueing is essentially a hybrid multiple and single vacation

scheme that was introduced in [3]. The main objective of the model in [3] was to

demonstrate how vacation queueing systems with exponentially distributed ser-

vice times and finite population could be modeled by the stochatic Petri net. In

this paper we assume that the population is infinite and service times have arbi-

trary distribution.

One important application of the vacation scheme with server timeout is to

enhance resource utilization in the single vacation model. Specifically, if there is

a problem in the arrival process that prevents customers from arriving for ser-

vice, the server may be idle indefinitely after returning from a vacation in the sin-

gle vacation. But when the idle time is bounded as described above, the server

can be used to perform other functions at the expiration of the timeout rather than

wait indefinitely. Thus, when the source is subject to breakdown, such as the dis-

ruption of the communication links along which messages arrive in a communi-

cation system, the server timeout scheme prevents the server from waiting indef-

initely for customers to arrive after returning from a vacation.

Two other hybrid vacation schemes have been proposed. In [4], if the server

returns from the ( )i�1 -th vacation and finds the system empty, it takes another

vacation with probability pi and waits for the first customer to arrive with proba-

bility 1� pi . In the later case the server takes a vacation after serving exhausti-

vely. In [2], if the server returns from a vacation and finds the system empty, it

takes at most J vacations repeatedly until it finds at least one customer waiting

in the system when it returns from a vacation. If no customer arrives by the J-th

vacation, the server waits until a customer arrives.

Analysis of the model. We assume that customers arrive at the system ac-

cording to a Poisson process with rate �� The time, X, to serve a customer has a

general distribution with cumulative distribution function (CDF) F xX ( ), mean

E X[ ] and second moment E X[ ]
2

. The Laplace—Stieltjes transform of X is

M sX ( ), which is defined by (see, for example, [5]):

M s E e e dF xX
sX sx

X( ) [ ] ( ).� �
� �

�

�

0
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The duration, V, of a vacation is also assumed to have a general distribution

with CDF F xV ( ) and Laplace—Stieltjes transform M sV ( ). The mean of V is

E V[ ] and its second moment is E V[ ]
2

. X and V are assumed to be mutually in-

dependent. Let the random variable A denote the number of customers in the sys-

tem at the beginning of a busy period. The probability mass function (PMF) of A

is p aA ( ) whose z-transform is given by G zA ( ) . That is,

G z E z z p aA
A a

A

a

( ) [ ] ( ).� �

�

�

�

0

The mean of A is E A[ ] and its second moment is E A[ ].
2

Let the random vari-

able B denote the number of customers left behind by an arbitrary departing cus-

tomer, and let L denote the number of customers in the system at an arbitrary

point in time. The PMF of B is p bB ( ) whose z-transform is given by G zB ( ).The

mean of B is E B[ ] and its second moment is E B[ ]
2

. Similarly, The PMF of L is

p lL ( ) whose z-transform is given by G zL ( ).The mean of L is E L[ ] and its sec-

ond moment is E L[ ].
2

Let Wq denote the waiting time in the system, and let the

utilization factor 	 be defined as 	 �� E X[ ] . The main result of the analysis is

the following.

Theorem. The mean waiting time in the system is given by

E W
E V

e M E V

E X
q c

V

[ ]
[ ]

{[ ] ( ) [ ]}

[ ]

( )

.�

� 





�
�

�

� �

�

	
�

2 2

2 1 2 1

P r o o f. As shown in [6], a vacation queueing system can be analyzed by the

following decomposition:

G z G z G zL B L( ) ( ) ( ),
( / / )

�
M G 1

where G zL ( / / )
( )

M G 1
is the z-transform of the number of customers in the system

in a standard M/G/1 queue (i.e., one in which the server never takes a vacation).

In [7] it is shown that

G z
G z

z E A
B

A
( )

( )

( ) [ ]

,�

�

�

1

1

G z
z M z

M z z
L

X

X

( / / )
( )

( )( ) ( )

( )

.
M G 1

1 1
�

� � �

� �

	 � �

� �

Thus, applying Little’s law [8] we obtain the mean waiting time as

E W
d

dz
G z E X

E A E A

E A

E X
q L z

[ ] ( ) [ ]
[ ] [ ]

[ ]

[ ]

(

� � �

�



�

1

2 2
1

2 2

� �

�

1�	)

.
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This means that once G zA ( ) is known we can obtain E Wq[ ]. The remainder

of the proof is devoted to deriving the expressions for G zA ( ) and M sW ( ), the

Laplace—Stieltjes transform of the waiting time.

Consider the following three mutually exclusive events associated with the

server’s experience after returning from a vacation.

1.The server returns from vacation, waits and commences another vacation

without serving a customer; the probability of this event is M eV
c

( )�
��

.

2. The server returns from vacation, waits and serves at least one customer

before taking another vacation; the probability of this event is M eV
c

( ){ }�
�

1�
�

.

3. The server returns from vacation and finds at least one waiting customer;

the probability of this event is1� MV ( )� .

Under event 2, a busy period is initiated with exactly one customer in the

system. Similarly, under event 3, a busy period is initiated with at least one cus-

tomer in the system. Therefore, if we define pk as the probability of event k,

given that a busy period was initiated before the server commences another va-

cation, where k �2 3, , then we obtain the following result:

G z zp
M z M

M
pA

V V

V

( )
( ) ( )

( )

,� 


� �

�

2 3

1

� � �

�

where

p
M e

e M

V
c

c
V

2

1

1

�

�

�

�

�

( ){ }

( )

,
�

�

�

�

p
M

e M

V

c
V

3

1

1

�

�

�
�

( )

( )

.
�

�
�

From this we obtain the result:

E A p
E V

M
p

V

[ ]
[ ]

( )

,� 


�

2 3

1

�

�

E A E A
E V

M
p

V

[ ] [ ]
[ ]

( )
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2

2 2
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1
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�

�

�

E W
E V

E A e M

E X
q c

V

[ ]
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E V

e M E V

E X
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V

[ ]

{[ ] ( ) [ ]}

[ ]
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,

2 2

2 1 2 1

which completes the proof. We consider limiting cases for c:

lim [ ]
[ ]

[ ]

[ ]

( )

,
c

qE W
E V

E V

E X

�

� 


�0

2 2

2 2 1

�

	

lim [ ]
[ ]

{ ( ) [ ]}

[ ]

( )

.
c

q

V
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These are the results obtained in [9] for the multiple vacation system and

single vacation system, respectively. Note that E Wq[ ]monotonically decreases

as c increases since

dE W

dc

E V M e

e M E V

q V
c

c
V

[ ] [ ] ( )

{[ ] ( ) [ ]}

�

�

� 


�

�

�

� �

� �

�

�

2 2

2
2 1

0

which is consistent with the fact that the single vacation scheme ( )c �� has a

smaller mean waiting time than the multiple vacation scheme( )c �0 .

Also, in [2] it is shown that the Laplace—Stieltjes transform of the waiting

time is given by

M s
G s

E A s M s
W

A

X

( )
( ){ ( / )}

[ ]{ ( )}

.�

� � �

� 


� 	 �

� �

1 1 1

Applying this result to our model yields

M s
M s s e M

s e M
W

V
c

V

c
V

( )
( ){ [ ( )] ( ) ( )}

{ ( )

�

� � 
 �

�

�

�

1 1 1

1

	 � �
�

�

( [ ]}{ ( )}�
 � � �
 � 
E V s M sX

which, on differentiation and evaluating at s �0, gives the same value of E Wq[ ]

obtained earlier.

Although the model has been analyzed with fixed timeout c, the analysis can

be extended to the case where the timeout is a random variable T with mean E T[ ]

and Laplace—Stieltjes transform M sT ( ). In this case only a slight modification

is required in the results. Specifically, we replace the factor e c��

with MT ( )� .

Optimal timeout design. As stated earlier,

dE W

dc

E V M e

e M E V

q V
c

c
V

[ ] [ ] ( )

{[ ] ( ) [ ]}

�

�

� 


�

�

�

� �

� �

�

�

2 2

2
2 1

0

which means that E Wq[ ] decreases as c increases. Thus, c = � provides the

smallest mean waiting time. However, one of the benefits of a vacation queueing

system is to engage the server in other activities when the queue is empty. This

means that any idle time incurs some cost to the system operator. For ease of

analysis, we assume that a linear cost is associated with idle times. Thus, the cost

incurred in the time interval c is kc, where k �0. To further simplify the analysis

we assume that k �1. We also assume that there is a unit cost per unit mean wait-

ing time. Therefore, we formulate the following optimization problem:

Minimize

subject to

S c E W c

c

q( ) [ ]

.

� 


� 0
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The solution to the problem satisfies the condition
d

dc
S c( ) .�0 That is,

�

� 



 �

�

�

� �

� �

�

�

2 2

2
2 1

1 0
E V M e

e M E V

V
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V

[ ] ( )

{[ ] ( ) [ ]}

.

Let x e c
�

��

. Then we obtain

2 4 4
2 2 2 2 2M x M E V M M E V xV V V V( ) { ( ) [ ] ( ) ( ) [ ]}� � � � � �� 
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2 2 2
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The solution to the equation is

x
E V M E V E V E V MV V

�


 
 � 
 
{ [ ] ( ) [ ]} [ ]{ [ ] ( )� � � � � � �
2 2 2 2 2

4 4 8 8 E V

MV

[ ]}

( )

.

4 �

It can be shown that

� � � � � � �E V E V M E V E V M E VV V[ ]{ [ ] ( ) [ ]} [ ] ( ) [
2 2 2 2 2

8 8 4 4
 
 � 
 
 ].

Thus, we use the smaller of the two solutions as the feasible solution and obtain

x
E V M E V E V E V MV V* { [ ] ( ) [ ]} [ ]{ [ ] ( )

�


 
 � 
 
� � � � � �
2 2 2 2 2

4 4 8 8�

�

E V

MV

[ ]}

( )

.

4

From this we obtain c x* *
ln{ }.� �1 �

The N-policy with timeout. The N-policy was introduced in [10] and op-

erates as follows. The server goes on vacation at the end of a busy period. The

vacation ends with the arrival of the N-th customer since the end of the last busy

period.

The N-policy scheme with timeout operates as follows. Consider cycles of

busy periods and let Til denote the arrival time of the i-th customer in the l-th cy-

cle, where i = 1, 2, …, N, and l = 1, 2, ... . Starting from the arrival of the first cus-

tomer in a given cycle, if less than N � 1 other customers arrive within the time

interval c, then the server’s vacation ends and service is performed exhaustively

at the end which another vacation begins. Assume that the system is empty and,

therefore, the server is on the l-th vacation. The vacation ends at timeTl given by

T T c Tl l Nl� 
min ( , )
1

l = 1, 2, ...

That is, the vacation ends at time TNl (when the N-th customer arrives) or

T cl1

 (if less than N �1customers arrive within the timeout period c measured

from when the first customer arrived), whichever comes first. This means that

each busy period begins with either N customers, if T T cNL l� 

1

,or n customers,

1 1� � �n N , otherwise. The server serves exhaustively and takes another vaca-
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tion when the system becomes empty, whatever number of customers the busy

period begins with.

The scheme is illustrated in Fig. 2, where it is assumed that N �3. In the fig-

ure, during the server’s first server vacation customer C
1

arrives and thus acti-

vates the timer. By the time the timeout expired only one other customer, C
2
, ar-

rived. Since the timeout has expired with less than 3 customers in the system, the

server initiates a busy period with two customers at time t
1
. Another customer,

C
3
, arrived during this busy period. After serving all 3 customers, the server

takes a vacation. While the server is on vacation, customerC
4

arrives to activate

the timer for the next cycle. The time expires at time t
2

and the server initiates a

busy period at that time with only one customer. During this busy period, cus-

tomersC
5

andC
6

arrive and are served before the server commences another va-

cation. While the server is on vacation, customer C
7

arrives and activates the

time. Before the timer expires customer C
8

arrives. The timer expires at time t
3

and the server initiates a busy period at that time with two customers. During that

busy period customer C
9

arrives and is served before the server commences an-

other vacation. The process continues, as shown in the figure. The intervals la-

beledVi , i = 1, 2, ..., indicate the vacation intervals under the normal N-policy.

The analysis of the model is similar to that for the single vacation with

server timeout. In the current scheme, a busy period will commence with exactly

N customers in the system with probability q N which is the probability of N �1

or more Poisson arrivals in an interval of length c and thus is given by

q
c

n
eN

n

n

N
c

� �

�

�

�

�1

0

2
( )

!

.
� �
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Fig. 2. N-policy scheme with timeout



Similarly, a busy period will commence with n customers, 1 1� � �n N , with

probability qn , which is the probability of exactly n�1. Poisson arrivals in an in-

terval of length c and is given by

q
c

n
en

n
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1

1
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If we define D as the event that there are N customers at the beginning of a busy

period and E as the event that there are less than N customers at the beginning of

a busy period, then p qD N� , p qE n n� .

Mimicking the method used in [2] we have the following conditional

Laplace—Stieltjes transform of the waiting time:
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Thus, the unconditional Laplace—Stieltjes transform of the waiting time is

given by
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From this we obtain the mean waiting time as
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Before considering the limiting values of c, we recall that the expected value of A

is given by
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which are the results for a standard M/G/1 queue with no server vacation and a

standard N-policy scheme without timeout, as shown in [10] respectively. We

observe that
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which means that the expected waiting time monotonically increases with c.

Therefore, the optimal value of c is zero.

Summary. We have derived expressions for the mean waiting time of a va-

cation queueing system in which the server does not immediately take another

vacation upon returning from a vacation and finding the system empty, as in the

multiple vacation scheme, or wait indefinitely for a customer to arrive, as in the

single vacation scheme. In the proposed model, if the server returns from a vaca-

tion and finds the system empty, it waits for a fixed time c. If at the expiration of

this time no customer arrives, the server will take a vacation; otherwise it serves

arriving customers exhaustively before taking another vacation. The results of

the analysis are consistent with those of the multiple vacations scheme (where

c �0, and the single vacation scheme where c ��). A linear cost model was as-

sumed to obtain the optimal value of c for the assumed model.

The model is also extended to the N-policy scheme where the timeout is

measured from the arrival of the first customer since the end of the last busy pe-

riod. The results have also been shown to be consistent with earlier results for the

O. C. Ibe
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case when c �0, which is the standard M/G/1 queue, and the case when c ��,

which is the N-policy scheme without timeout. It is shown that the expected

waiting time increases monotonically with c, which means that c �0 gives the

minimum expected waiting time.

Ðîçãëÿíóòî îäíîñåðâåðíó ñèñòåìó ìàñîâîãî îáñëóãîâóâàííÿ (ÑÌÎ) ç ïåðåðâàìè, ùî

ïðàöþº ó òàêîìó ðåæèì³: ïðè âêëþ÷åíí³ ñåðâåðà ï³ñëÿ ïåðåðâè, ÿêùî õî÷à á îäèí êë³ºíò

ïåðåáóâàº ó ñèñòåì³, ñåðâåð ïî÷èíàº îáñëóãîâóâàííÿ ³ ïðîäîâæóº éîãî äî íàñòóïíî¿

ïåðåðâèèêùî âèÿâëÿºòüñÿ, ùî ñèñòåìà º ïóñòîþ, ñåðâåð ïåðåáóâàº ó ðåæèì³ î÷³êóâàííÿ

ô³êñîâàíèé ÷àñ ñ. Ïî çàê³í÷åíí³ öüîãî ÷àñó ïî÷èíàºòüñÿ íàñòóïíà ïåðåðâà ó ðîáîò³

ñåðâåðà, ÿêùî íîâèé êë³ºíò íå ç’ÿâèâñÿ. Ó ïðîòèëåæíîìó âèïàäêó êë³ºíò îáñëóãîâóºòüñÿ

äî ïî÷àòêó ÷åðãîâî¿ ïåðåðâè. Îòðèìàíî àíàë³òè÷í³ îö³íêè äëÿ ñåðåäíüîãî ÷àñó î÷³êóâàííÿ

â ñèñòåì³. Ïîêàçàíî, ùî ñõåìà ïåðåðèâàíü º óçàãàëüíåíîþ ñõåìîþ, â ÿê³é îäèíè÷íà òà

ìíîæèííà ñõåìè ïåðåðèâàíü — îêðåìèé âèïàäîê â³äïîâ³äíî ïðè c �� ³ c � 0. Ìîäåëü

ðîçïîâñþäæóºòüñÿ íà ÑÌÎ ç N-ñòðàòåã³ÿìè ïåðåðèâàíü. Ó îáîõ ñõåìàõ âèêîðèñòàíî

ë³í³éíó ìîäåëü âèòðàò äëÿ îòðèìàííÿ îïòèìàëüíîãî ïàðàìåòðà ñïðàöüîâóâàííÿ ñ.
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