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Finding Sources of Synchronization-free
Slices in Perfectly Nested Loops

Algorithms, permitting us to find sources of synchronization-free slices of perfectly nested uni-

form and non-uniform loops, are presented. Sources extracted are to be used for creating synchro-

nization-free-slices that can be executed independently preserving the lexicographic order of iter-

ations in each slice. Our approach requires exact dependence analysis and based on operations on

relations and sets. To describe and implement the algorithms, the dependence analysis by Pugh

and Wonnacott was chosen where dependences are found in the form of tuple relations. The pro-

posed algorithms have been implemented and verified by means of the Omega project software.

Ïðåäñòàâëåíû àëãîðèòìû, ïîçâîëÿþùèå íàõîäèòü íåñèíõðîíèçèðîâàííûå ôðàãìåíòû,

ñîäåðæàùèå èòåðàöèè ïîëíîñòüþ âëîæåííûõ îäíîðîäíûõ è íåîäíîðîäíûõ öèêëîâ. Òàêèå

ôðàãìåíòû ìîãóò âûïîëíÿòüñÿ íåçàâèñèìî, ñîõðàíÿÿ ëåêñèêîãðàôè÷åñêèé ïîðÿäîê èòåðà-

öèé â êàæäîì ôðàãìåíòå. Ïðåäëîæåííûé ïîäõîä îñíîâàí íà îïåðàöèÿõ îòíîøåíèé è

ìíîæåñòâ è òðåáóåò òî÷íîãî àíàëèçà çàâèñèìîñòåé ìåæäó îïåðàòîðàìè ïðîãðàììû. Äëÿ

îïèñàíèÿ è ðåàëèçàöèè àëãîðèòìîâ âûáðàí àíàëèç çàâèñèìîñòè ïî Ïóãó è Âîííàêîòó,

ñîãëàñíî êîòîðîìó çàâèñèìîñòè îòûñêèâàþòñÿ â ôîðìå îòíîøåíèé êîðòåæà. Îïèñàííûå

àëãîðèòìû ðåàëèçîâàíû è âåðèôèöèðîâàíû ïîñðåäñòâîì ïðîãðàììíîãî ïàêåòà Omega

project.

K e y w o r d s: loop transformations, perfectly nested loops, synchronization-free parallelism.

Introduction. Finding synchronization-free slices in loops is of great importance

for parallel and distributed computing, enhancing code locality, and reducing mem-

ory requirements. Different techniques have been developed to extract synchroniza-

tion-free parallelism available in loops, for example [1—13]. However, to our

knowledge, none of well-known techniques extracts the entire synchronization-free

parallelism available in the general case of affine non-uniform loops.

The goal of this paper is to present an approach which permits us to extract

synchronization-free slices available in loops when well-known techniques may

fail to extract such slices. It is applicable to perfectly nested both non-para-

meterized and parameterized loops and allows synchronization-free slices to be

extracted at compile or run-time.
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The purpose of extracting synchronization-free slices is not only to get scalable

performance on parallel computers and distributed systems but also to enhance per-

formance on a uniprocessor thanks to enhancing data locality and to reduce memory

requirements to decrease cost and power consumption in embedded systems.

Our approach is based on exact data dependence analysis and on operations

on sets and relations. We have implemented and verified our approach by means

of the Omega project software [14].

Background. In this paper, we deal with affine loop nests where, for given

loop indices, lower and upper bounds as well as array subscripts and condition-

als are affine functions of surrounding loop indices and possibly of structure pa-

rameters, and the loop steps are known positive constants. Presented algorithms

are to be used for extracting synchronization-free slices. The iterations belong-

ing to slices requiring synchronization can be parallelized with well-known

techniques, for example, [1, 15 —19].

For the perfectly nested loop, all its statements are comprised within the in-

nermost nest. We refer to a particular sequential execution of all the statements

of the loop body as an iteration. Each iteration of an n-level nested loop is repre-

sented with an iteration vector I of dimension n.

Two iterations I and J are dependent if both access the same memory loca-

tion and if at least one access is a write. We refer to I and J as the source and des-

tination of a dependence, respectively, provided that I is lexicographically less

than J (I � J). The vector d = J – I is referred to the dependence vector. The loop

nest is said to be uniform if all dependence vectors do not depend neither on I,

nor on J.

Our approach requires an exact representation of loop-carried dependences

and consequently an exact dependence analysis which detects a dependence if

and only if it exists. To describe and implement our algorithms, we chose the de-

pendence analysis proposed by Pugh and Wonnacott [20] where dependences

are represented with dependence relations comprised of Presburger formulas,

which can be built up out of linear constraints over integer variables, logical con-

nectives, and universal and existential quantifiers [20]. We assume that the

reader is familiar with that dependence analysis.

We refer to the source (destination) of a dependence as the ultimate depend-

ence source (destination) if it is not the destination (source) of any other depend-

ence. Program slicing is a viable method to restrict the focus of a task to specific

sub-components of a program. Program slicing was first introduced by Mark

Weiser [21]. According to the original definition [22], the notion of slice was

based on the deletion of statements. A slice is an executable subset of program

statements that preserves the original behavior of the program with respect to a

subset of variables of interest and at a given program point [22].
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In paper [23] the idea of iteration space slicing was introduced. Iteration

space slicing takes dependence information as input to find all statement in-

stances from a given loop nest which must be executed to produce the correct

values for the specified array elements. We can think of the slice as following

chains of transitive dependences to reach all statement instances which can

affect the result.

In this paper we deal with specific slices, which can be synchronization-free

or requiring synchronization.

Definition 1. A slice is a set of dependent iterations including an ultimate

dependence source and all the dependence destinations such that each depend-

ence destination except from the lexicographically maximal destination (ulti-

mate dependence destination) is the source of the next dependence.

Definition 2. A slice is independent or synchronization-free if the intersec-

tion of the set of iterations representing this slice and the set representing the rest

of computation in a loop is empty.

Definition 3. The source of a slice is the ultimate dependence source that

this slice comprises, i. e., the lexicographically minimal iteration among all the

iterations belonging to this slice.

Our algorithms are based on the operations on relations and sets presented in

Table 1, where R and S denote relations and sets, respectively. In detail, these op-

erations are described in [14] and we assume that the reader is familiar with these

operations. We would like to note only that there exist two relations related to tran-

sitive closure: positive transitive closure, R+, and transitive closure, R* = R + � I,

where I is the identity relation, and both of them are used in the algorithms pre-

sented in this paper.

In one of the algorithms presented in this paper, the loop interchange trans-

formation is applied [1]. It consists in switching the nesting order of two loops in

a perfect nest. The legality condition of this transformation can be found in [1].
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Operations Denotation in the Omega Calculator

R R
1 2

�

S S
1 2

�

Intersection

R R
1 2

�

S S
1 2

�

– , Difference

R R
1 2

�

S S
1 2

�

Union

Inverse R � , Inverse

Positive Transitive Closure of R +, Transitive_Closure

Table 1. Operations on relations and sets



Given dependence relations calculated for the loop, our approach to extract-

ing sources of synchronization-free slices of the loop iterations consists of the

following steps. First to increase the number of synchronization-free slices, we

should remove redundant dependences. Second, we have to extract a set of all ul-

timate dependence sources and next split it into two sets including sources of

slices requiring synchronization and sources of synchronization-free slices, re-

spectively. When the sources cannot be extracted in the whole loop domain, we

try to find subspaces in the loop domain where synchronization-free slices can

be extracted.

The following sections describe each step in detail.

Removing redundant dependences. A redundant dependence is one that

can be eliminated without missing any information about dependences required

for extracting all synchronization-free slices available in the loop. A dependence

is redundant if it is implied by the other dependences. For example, a redundant

dependence is a direct dependence that is described by different dependence re-

lations (one dependence has to be retained, the rest dependences can be re-

moved) or it is such a direct dependence whose source and destination are the

source and destination of a transitive dependence. The elimination of redundant

dependences may increase the number of synchronization-free slices that we are

able to extract from the loop. Let us consider the following example.

Example 1.

for(i = 1; i � 10; i++)
for(j = 1; j � 10; j++) {

(a) a[i][j] = a[i] [j �1];
(b) c[i][j] = c[i] [j �1];
(ñ) b[i][j] = b[i] [j �2];

}
The loop above originates the following dependence relations found with

Petit (Fig. 1, a)

(data dep. a�a) R1 := {[i,j] � [i,j+1] : 1 � i � 10 && 1 � j � 9},
(data dep. b�b) R2 := {[i,j] � [i,j+1] : 1 � i � 10 && 1 � j � 9},
(data dep. c�c) R3 := {[i,j] � [i,j+2] : 1 � i � 10 && 1 � j � 8}.

If we take into account all dependence relations, the presented algorithm

cannot extract synchronization-free slices because there exist common depend-

ence destinations described with the different dependence relations. But R2 is re-

dundant because it represents the same dependences as R1 does, hence it can be

removed (Fig. 1, b). Relation R3 is also redundant because for each direct de-

pendence represented with R3 there exists a transitive dependence represented

with relation R1, hence R3 can be removed. Removing R2 and R3 permits us to ex-

tract synchronization-free slices shown in Fig. 1, c.
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The removal of redundant dependences is a well-known problem consid-

ered in many publications, for example, in [24] and it is out of the scope of this

paper.

Finding sources of slices. In this section, we describe an algorithm that per-

mits us to find the lexicographically minimal iteration among all the iterations

belonging to the slice. Such an iteration is the source of a slice.

The following steps are to be fulfilled for extracting synchronization-free

slices. First we form two sets containing independent and dependent iterations,

respectively. Next using the set, containing dependent iterations, we extract all

ultimate dependence sources. Then a set comprising sources for slices requiring

synchronization, RSS, and a set including sources for synchronization-free

slices, SFS, are built. The number of iterations in set SFS determines the number

of synchronization-free slices.

In the algorithm that follows, we suppose that (i) each dependence relation

does not represent two or more different dependence destinations corresponding

to the same dependence source; if this is the case, the relation has to be normalized

to satisfy the above condition (redundant dependences have to be removed or it

has to be split into several dependences such that each of them does not describe

common iterations); (ii) any two relations, Ri and Rj, such that one of them de-

scribes ultimate dependence destinations that are ultimate dependence sources de-

scribed with the other relation are represented with a single relation R:=Ri � Rj.

Algorithm 1. Extracting sources of slices requiring synchronization and

sources of synchronization-free slices.

Input: set S_In including normalized relations representing loop-carried

dependences: R1, R2, …, Rm, where m is the number of relations.

Output: a set of sources of slices requiring synchronization, RSS; a set of

sources of synchronization-free slices, SFS.
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c — dependences after removing R2 and R3



1. Calculate the union of all dependence relations, R, inversion of R, IR, and

initialize a set of common iterations, CI:

R := R1 � R2 � … � Rm ; IR := inverse R ; CI := EMPTY.

2. Find a set of all common sources and destinations, CI. If set S_In includes

the only relation, then go to step 3. Otherwise for each pair of relations Ri and Rj

in set S_In, where i � j, i, j � m do

CI = CI � (domain Ri � domain Rj) � (range Ri � range Rj).

3. Find dependence sources, I, as the domain of relation R; find dependence

destinations, J, as the range of relation R. Find all ultimate dependence sources,

UDS, as the difference between sets I and J, that is,

UDS := (domain R) – (range R).

4. If CI == EMPTY, then UDS contains all sources of synchronization-free

slices, SFS : = UDS, the end; otherwise go t step 5.

5. Calculate a set of dependence sources belonging to slices requiring syn-

chronization, RSS1, using step 5a or 5b (Table 2).

6. To find a set comprising sources of dependent slices, RSS, calculate the

intersection between RSS1 and UDS

RSS := RSS1 � UDS.

7. To find a set including sources of synchronization-free slices, SFS, calcu-

late the difference between UDS and RSS

SFS := UDS – RSS.

It is worth to note that when a set of common iterations, CI, is EMPTY, all

ultimate dependence sources are the sources of synchronization-free slices.

When the loop originates common iterations, Steps 1 to 5 of Algorithm 1 find all

the iterations, RSS1, belonging to slices requiring synchronization on the back-
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Step 5a Step 5b

With applying transitive closure Without applying transitive closure (only for

non-parameterized CI and IR)

Calculate:

IR+ := Transitive Closure IR,

RSS1 := IR+(CI) /*applying relation IR+ to set

CI*/

TEMP := CI, RSS1:= CI,

L: find a set of dependence sources belonging

to slices requiring synchronization, TEMP, as:

TEMP := IR(TEMP) /* applying relation IR to

set TEMP*/

If TEMP == EMPTY, then go to step 6,

otherwise RSS1 := RSS1 TEMP,

go to L:

Table 2. Calculating a set of dependence sources



wards paths from common iterations, contained in set CI, to sources of slices re-

quiring synchronization.

Step 5a of Algorithm 1 can be applied to loops with both parameterized and

non-parameterized bounds at compile or run-time whereas step 5 b can be applied to

loops with parameterized bounds only at run-time when bounds become known.

It is well known that the exact transitive closure of an affine integer tuple re-

lation may not be affine [24]. Exact transitive closure represented with affine

forms is therefore not computable in the general case of the affine dependence

relation. However, it is always computable for affine loops originating uniform

dependences [24]. In the case when the Omega library computes inexact transi-

tive closure, we may approximate this closure and try to extract slices.

To illustrate Algorithm 1 let us consider the following loop.

Example 2.

for(i = 1; i � n; i++)
for(j = 1; j � n; j++) {

a(2*i, 3*j) = b(i,j)
b(i+1, j) = a(i, j)

}

The relations representing loop-carried dependences in this loop are as fol-

lows

(data dep.) R1 : {[i,j] � [2i,3j] : 1 <= j && 2i <= n && 1 <= i && 3j <= n},
(data dep.) R2 : {[i,j] � [i+1,j] : 1 <= i < n && 1 <= j <= n}.

Fig. 2 presents dependences for the loop of Example 2. Following Algo-

rithm 1, we get the following results.
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1. R := R1 � R2 := {[i,j] � [2i,3j] : 1 � j && 2i � n && 1 � i && 3j � n} union {[i,j] �

� [i+1,j]: 1 � i < n && 1 � j � n},
IR := inverse R := {[In_1,j] � [i,j	] : j = 3j	 && In_1 = 2i && 1 � j	 && 2i � n && 1 � i

&& 3j	 � n} union {[In_1,j] � [In_1�1,j] : 2 � In_1 � n && 1 � j � n},
CI:=EMPTY.
2. CI := {[i,j]: 1 � j && 2i � n && 1 � i && 3j � n} union {[i,j]: Exists ( alpha,beta : j =

=3alpha && 2beta = i && 2 � i � n && 3 � j � n)}.
3. I := domain R, J := range R,
UDS := I – J := {[1,j]: 1 � j � n && 2 � n}.
4. Since CI is not EMPTY, go to step 5a (using transitive closure).

5. TIR := IR+ union {[i,j] � [i,j]} := {[2,j] � [1,j] : n = 2 && 1 � j � 2} union {[i,j] � [i,j] }
union {[i,j] � [i	,j	] : 1 � j	 � j � n && i	+2 � i � n && 1 � i	 && 3j � 2n+3j	 && 2i � 4+n+2i	
&& UNKNOWN} union ...

Since relation TIR includes UNKNOWN in the constraints, we approximate

TIR to calculate the upper and lower bounds for TIR. Calculating and using the

upper bound (UNKNOWN=True) for forming set SFS with Algorithm 1 yield

the following result

SFS := {[1,j]: 2 � n � 3, 3j�1 && j � 2} union {[1,j]: Exists ( alpha : 4, j � n �

�3alpha+2 && 3alpha < j)}.

Set SFS above does not include all sources of synchronization-free slices,

we miss some sources.

Calculating the lower bound for TIR(UNKNOWN=False), LTIR,

LTIR := lower_bound TIR := {[2,j] � [1,j] : n = 2 && 1 � j � 2} union {[i,j] � [i,j] }
union {[i,j] � [i	,j	] : j = 3j	 && 2i	 � i � n && 3j	 � n && 1 � j	 && 1 � i	} union {[i,j] �

� [i	,j	] : j = 9j	 && 4i	 � i � n && 9j	 � n && 1 � j	 && 1 � i	} union {[i,j] � [i	,j] : 1 � i	 < i�
� n && 1 � j � n && 3 � n}

permits us to extract all sources of synchronization-free slices being contained in

the following set

SFS := {[1,j]: Exists ( alpha : j, 2 � n � 3j�1 && 3alpha+1 � j � 3alpha+2)}.

Finding subspaces in the loop domain where synchronization-free slices
can be extracted. When synchronization-free slices cannot be extracted in the

whole loop domain, we can try to find subspaces in the loop domain where syn-

chronization-free slices can be extracted. The following algorithm analyzes de-

pendence vectors in a particular way to discover subspaces of interest.

Algorithm 2. Finding subspaces with synchronization-free slices in the

loop domain.

Input: a source loop; set S_In being comprised of relations representing

loop-carried dependences R1, R2, ..., Rm and set D being comprised of correspon-

dent dependence vectors D1, D2, ..., Dm, where m is the number of relations.
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Output: loop indices defining subspaces where the algorithm extracts

sources of synchronization-free slices; set S_Out including dependence rela-

tions to be used for extracting slices in subspaces; sources of synchroniza-

tion-free slices described with relations contained in set S_Out.

1. Check whether in set D there exists a dependence vector with one or more

zero coordinates. If no, then the end, the algorithm does not extract any subspace

with synchronization-free slices; otherwise go to step 2.

2. Set S_Out:= EMPTY.

2.1. Add to set S_Out dependence relation Ri belonging to set S_In and such

that it has the minimal number of subsequent zero coordinates in the correspon-

dent vector Di among all the vectors in set D (if there exist two or more such re-

lations, choose any of them; if a chosen relation yields in a correspondent de-

pendence vector two or more sequences with the same number of zeros, chose

any of them),

2.2. Add to set S_Out all the dependence relations from S_In such that the

correspondent dependence vectors have the same zero coordinates as those cho-

sen in Di and the rest coordinates are arbitrary expressions (zero or nonzero),

2.3. Check whether set S_Out includes the same number of dependence re-

lations that set S_In does. If so, the end, the algorithm does not extract any

subspace with synchronization-free slices; otherwise go to step 3.

3. Apply Algorithm 1 to set S_Out. If it extracts sources of synchroniza-

tion-free slices for S_Out, then check whether the source loop is semantically the

same as that whose body is the same as that of the source loop and whose outer

and inner loops are represented with indices that form the minimal number of

subsequent zero coordinates of Di and the rest ones, respectively (checking the

legality of the loop interchange transformation); any known technique can be

used for this purpose, for example, ones described in [1]. Else go to step 4.

If so, memorize the loop indices representing zeros in the chosen

subsequence of zero coordinates in vector Di; memorize the sources of synchro-

nization-free slices for S_Out and set S_Out, the end. Else go to step 4.

4. Check whether in set D there exists a dependence vector, Di, with another

non-analyzed subsequence of zero coordinates. If so, S_Out:= EMPTY, add the

correspondent dependence relation Ri into set S_Out and go to step 2.2, other-

wise the end, the algorithm does not extract any subspace with synchroniza-

tion-free slices.

It is worth to note that choosing in vector Di the minimal number of subse-

quent zero coordinates aims at extracting the maximal number of synchroniza-

tion-free slices. Dependence relations not included in set S_Out do not describe

any dependence in each subspace of interest because of non-zero coordinates of

correspondent dependence vectors derived from these relations. Each depend-
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ence represented with relations not being included in set S_Out has a source and

destination belonging to different subspaces (the source and destination of a de-

pendence do not belong to the same subspace). Hence, we do not take them into

account to extract sources of synchronization-free slices in appropriate sub-

spaces of the loop domain. At generating code, we have to guarantee enumerat-

ing subspaces serially in lexicographic order to preserve dependences repre-

sented with relations not being included in set S_Out.

The following example illustrates applying Algorithm 2.

Example 3.

for (i = 1; i � n; i++)
for (j = 1; j � n; j++)
for (k = 1; k � n; k++){

a (i,j,k) = a (i,j�1,k)
b (i,j,k) = b (i,j,k�1)

}

Dependence relations and correspondent dependence vectors for this loop

are as follows.

R1 := {[i,j,k] �[i,j+1,k] : 1 � i � n && 1 � j < n && 1 � k � n},
D1 := {[0,1,0]},
R2 := {[i,j,k] � [i,j,k+1] : 1 � i � n && 1 � j � n && 1 � k < n}.
D2 := {[0,0,1]}.

The input date for this loop are sets S = { R1, R2 } and D = { D1, D2 }. Apply-

ing Algorithm 2, we yield.

1. In set D there exists a dependence vector with zero coordinates, we go to

step 2.

2. S_Out: = EMPTY.

2.1. We choose index k representing the zero coordinate in vector D1 and

form set S_Out := { R1 }.

2.2. S_Out: = { R1 }.

2.3. Because S_Out does not include the same number of dependence rela-

tions as S_In does, we go to step 3.

3. Applying Algorithm 1 to set S_Out we get the following sources of syn-

chronization-free slices

SFS: = { [i,j,k] :j = 1 && 1 � i � n && 1 � k � n && 2 � n }.

3.1. Because the correspondent loop interchange transformation is legal, we

memorize index k, set SFS, and set S_Out.

Related work. The results of the paper are within the iteration space slicing

framework introduced by Pugh and Rosser in paper [23]. This framework might

have a number of uses. Pugh and Rosser examined in paper [23] how to apply
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this framework to optimization of interprocessor communication. In particular,

they demonstrated how to use slicing to enable loop fusion, tolerate message la-

tency and allow message coalescing. To form slices, they use the transitive clo-

sure operation to compute the transitive dependences among iterations and then

compute the set of iterations that are reachable via the transitive closure in the

forwards or backwards direction, depending on the application. But Pugh and

Rosser do not describe in paper [23] how to construct synchronization-free

slices. Our contribution to the iteration space slicing framework consists in pre-

senting how to extract sources of both synchronization-free slices and slices re-

quiring synchronization. We are unaware of any work describing techniques ex-

posing sources of synchronization-free slices.

The affine partitioning framework, considered in many papers, for example,

[10 —12, 18, 19, 25 — 27] unifies a large number of previously proposed loop

transformations. Today, it is one of the most powerful frameworks for loop

transformations allowing us to extract synchronization-free parallelism pre-

sented in loops with both uniform and affine dependences. However, for the

general case of non-uniform loops, this framework does not permit us to build

non-affine schedules for extracting parallelism. We believe that the algorithms

presented in this paper opens a possibility to extract synchronization-free

slices when the affine partitioning framework and other well-known techniques

can fail in extracting such slices.

The idea to seek for parallelism in subspaces of the loop domain is not new.

It is discussed in many papers. Our contribution consists in demonstrating how

Algorithm 1, presented in this paper, can be applied to subspaces of the loop do-

main and how these subspaces can be extracted.

Conclusion. In this paper, we described algorithms, permitting us to find

sources of synchronization-free slices comprised of iterations of perfectly nested

uniform and non-uniform loops. Extracting sources of synchronization-free

slices will allow us to find iterations belonging to each synchronization-free

slice. Each slice can be executed without synchronization with the other slices,

thus allowing us to enhance code locality, and (or) reduce memory require-

ments. The presented technique comprises the following steps: finding exact de-

pendence relations, removing redundant dependence relations or removing re-

dundant dependences from dependence relations, finding sources of synchroni-

zation-free slices.

In our future work, using the results of this paper we intend to present how

to extract iterations belonging to each synchronization-free slice and how to

generate code enumerating sources of slices and iterations of each slice in lexi-

cographic order.
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Íàâåäåíî àëãîðèòìè, ùî äîçâîëÿþòü çíàõîäèòè íåñèíõðîí³çîâàí³ ôðàãìåíòè, ÿê³ âì³-

ùóþòü ³òåðàö³¿ ïîâí³ñòþ âêëàäåíèõ îäíîð³äíèõ ³ íåîäíîð³äíèõ öèêë³â. Òàê³ ôðàãìåíòè

ìîæóòü âèêîíóâàòèñü íåçàëåæíî, çáåð³ãàþ÷è ëåêñèêîãðàô³÷íèé ïîðÿäîê ³òåðàö³é ó êîæ-

íîìó ôðàãìåíò³. Çàïðîïîíîâàíèé ï³äõ³ä áàçóºòüñÿ íà îïåðàö³ÿõ â³äíîøåíü òà ìíîæèí ³ ïî-

òðåáóº òî÷íîãî àíàë³çó çàëåæíîñò³ ì³æ îïåðàòîðàìè ïðîãðàìè. Äëÿ îïèñó òà ðåàë³çàö³¿

àëãîðèòì³â îáðàíî àíàë³ç çàëåæíîñò³ ïî Ïóãó ³ Âîííàêîòó, çã³äíî ç ÿêèì çàëåæíîñò³

çíàõîäÿòü ó ôîðì³ â³äíîøåíü êîðòåæó. Îïèñàí³ àëãîðèòìè ðåàë³çîâàíî ³ âåðèô³êîâàíî çà

äîïîìîãîþ ïðîãðàìíîãî ïàêåòà Omega project.
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