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Predictability in Spatially
Extended Systems with Model Uncertainty *. I

Macroscopic models for spatially extended systems under random influences are often described
by stochastic partial differential equations. Some techniques for understanding solutions of such
equations, such as estimating correlations, Liapunov exponents and impact of noises, are dis-
cussed. They are relevant for understanding predictability in spatially extended systems with
model uncertainty, for example, in physics, geophysics and biological sciences. The presentation
is for a wide audience.

PaCCMOTpeHI)I HEKOTOPBIC METOABI ITPEICTABIICHUS peHIeHI/Iﬁ CTOXaCTUYCCKUX )II/I(l)(bepeHL[I/IaJ'II)HI)IX
ypaBHeHI/Iﬁ B YACTHBIX MPOU3BOAHBIX, B HACTHOCTHU B 3aJla4aX KOPPEIIAIUU OLEHKH, SKCIIOHCHTHI
HﬂHyHOBa u BO3Z[€ﬁCTBI/I€ ITYMOB. MGTOJ_'[I)I TMPUTOAHBI AJIs1 TIOHUMAaHMs MPEJICKa3yeMOCTHU B IIPOCT-
PAHCTBCHHO PAaCHpEACICHHBIX CHUCTEMax C HCONPEACICHHOCTBIO MOJICIIH, HAIIpUMEP, B (1)I/ISI/IKC,
FCO(i)I/BI/IKe 1 OHOJIOTMYECKHUX HayKax.
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4. Correlation. In this section, we discuss correlation of solutions, at different
time instants, of some linear SPDEs. We first recall some information about
Fourier series in Hilbert space.

Hilbert-Schmidt theory and Fourier series in Hilbert space. A separable
Hilbert space H has a countable orthonormal basis {e, },_,. Namely, (e,,.e, ) =3,,,,
where §,,, is the Kronecker delta function. Moreover, for any 4 €H, we have
Fourier series expansion

h=i<h,en>en.

n=l1
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In the context of solving stochastic PDEs, we may choose to work on a
Hilbert space with an appropriate orthonormal basis. This is naturally possible
with the help of the Hilbert-Schmidt theory [1, p. 232].

The Hilbert-Schmidt theorem [ 1, p. 232] says that a linear compact symmet-
ric operator 4 on a separable Hilbert space H has a set of eigenvectors that form a
complete orthonormal basis for H. Moreover, all the eigenvalues of 4 are real,
each non-zero eigenvalue has finite multiplicity, and two eigenvectors that cor-
respond to different eigenvalues are orthogonal.

This theorem applies to a strong (self-adjoined) elliptic differential operator B

Bu= Z (‘D‘a‘Da(aaB(X)DBu), xeDcR",
0<jol, [Bl<m

where the domain of definition of B is an appropriate dense subspace of
H =I*(D), depending on the boundary condition specified for u (x).

In this case, 4 := B is a linear symmetric compact operator in a Hilbert
space, e. g., H =I*(D). We may consider 4 := (B + al)" for some real number a.
This may be necessary in order for the operator to be invertible, i.e., no zero
eigenvalue, such as in the case of Laplace operator with zero Neumann boundary
condition.

By the Hilbert-Schmidt theorem, eigenvectors (also called eigenfunctions in
this context) of 4 =B"' form an orthonormal basis for H =L2(D). Note that 4
and B share the same set of eigenfunctions. So we can claim that the strong ellip-
tic operator B’s eigenfunctions form an orthonormal basis for # = L*(D).

In the case of one spatial variable, the elliptic differential operator is the so
called Sturm-Liouville operator [1, p. 245]. For example Bu=—(pu')' +qu,
x €(0,/)where p(x), p'(x)and ¢ (x)are continuous on (0, /). This operator arises
in the method of separating variables for solving linear (deterministic) partial
differential equations in the next section. By the Hilbert-Schmidt theorem,
eigenfunctions of the Sturm-Liouville operator form an orthonormal basis for
H =1*(0,1).

The wave equation with additive noise. Consider the stochastic wave equa-
tion with additive noise

_ 2
u, =cu, +eW,, 0<x<lI, t>0,

u(0,£)=u(l,t)=0,
u(x,0)=/ (x) u,(x,0)=g(x),

where ¢ is a real parameter modeling the noise intensity, ¢ > 0 is a constant (wave
speed), and I, is a Brownian motion taking values in Hilbert space H = *(0, [).
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Method of eigenfunction expansion:
u=yu,(0)e,(x), W, =3 q,W,(1)e,(x),
n=1 n=1

where

e, (x) =~2Isin @ A, =(nm)?, n=1,2, ...
The final solution

u(x,t)= Z{ —en\/aj.smlde(s)}coslt+

t
j{Bn +51MIcoscTtden(s):| sinc’;nt} e, (x),
0

CNnT

where

A4,=(f,e,), B, :L<g,en>.
Cnm

When the noise is at one mode, say at the first mode e, (x)(i.e.,g; >0 but g, =
=0,n=2,3,...), we see that the solution contains randomness only at that mode.
So for the linear stochastic diffusion system, there is no interactions between
modes. In other words, if we randomly force a few fast modes, then there is no
impact on slow modes.

Mean value for the solution:

Bu(x, 1) = Z[A cos( 1 j+B [C”[mﬂen(x).

n=l1

Covariance for the solution: now we calculate the covariance of solution u at
different time instants  and s, i. €. E< u (x,¢)—Eu (x,?), u(x,s)—Eu (x,s)>. Us-
ing the Ito’s isometry, we get

E<u(x,t)-EBu(x,t), u(x,s)—-EBu(x,s) >=

© tAS
q, . 2 CNTr cntt CHTS
E I sin drcos ——cos —— +
-
= 7 ! ! !

NS

> CATF . CHT . CHATS
+ J.cos drsin —

sin
[
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.. cnmr cnmr cnmt . cnms cnms . cnmt
- jSll’l CcoS / dr| cos Sin +CO0Ss Sin .

[

After integrations, we get the covariance as

Cov (u(x,t),u(x,s))=E<u(x,t)-BEu(x,t),u(x,s)—Bu(x,s)>=

:Z e lq, (t/\s)coscmt(t_s)— / Sin2cmt(t/\s)coscm'c(t+s)+
Zn’n? 2cnm / [

[ 2enm(tAs) . cnm(t+s) [ . cnn(H—s)}
cos sin - sin =
2cnm / / 2cnm /

00 2 _ _
:Z e“l°q, [(t/\s)coscmc(t S)+ [ Sincm‘c(tJrs 2(tAs))
2cnm [

[ i ST (t+s)} ‘

2cenm /

In particular, for # = s we get the variance.
Variance for the solution:

© 272
Var(u(x,t))szzlzant— ! sin(2c7ntﬂ.
n=l1

cn'm denm

Energy evolution for the solution:
L
E(t):fji [uf +c*ulldx.

2%

Taking time derivative,

. l Z .
E(2) =J.ut [u, —czuxx ldx = eJ.ut(x, HW,(x)dx.
0 0
Or in integral form,

t
E(t)=E(0)+eJ. J.us(x,t)dWS(x)dx.
00
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It can be shown that
It 2
BE (£)=E (0), Var(E (1)) =82E[J- J-étu(x,s) dWsde ,
00
where W, is in the following form
W, =W(1)=3 g, W, (1) e,(x),
n=l1

and 0, u can be written in the following form :

P uzz A @ sin[ £ cnrt +B @ Scnnt+
! ! e ! !

t
q, { I sin 7cnlns dw,(s)sin —cnlm +
0

cnmt

+I cosﬂdW , (s )cosT }} e,(x).
Set cnm/l =, and rewrite

o,u= Z{ F (1) +eA/q, D (sinp,, s sinp,  +cosp, s cosy,, t) dW, (s)}} e, (x)=
0

:Z{ F,(t)+e \/EJ. cosp, (t—s)dWw, (s)} e,(x),
0

where F, (t):=—-A,n,ssinp, t+B,n,scosp,t,n=1, 2, ... . For the simplicity of
notations, set

t
G,(1):=F,(t)+e/q, j cosy, (t—s)dW,(s)yn=1,2, ...,
0

then we have 0, u = ZG,, (t)e,(x). Thus

t 2 o t 2
Eﬁjatu(x,s)dwsdx] =E|:j' > qnen(x)J.uden(s)de} =
00 n=1 0

0

0 It 2
=E| > Va, || use,,(x)de(swx} -
n=l 00
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- L -2

=K Z\/qﬁj jen(x)iGj(s)ej(x)dedW,,(s) =

Ln=1 0 \0 J=1 i

- ¢ " / 12
=E| >Jq, j G, (s) j en(x)ej(x)dxj dw,(s)| =

Ln=1 o \Lj=l 0 a

=E[§M [G.(s) de(S)} ~34,E j G (s)ds =
n=1 0

n=1

¢ 2
=>q, J[F (s)+8\/Z.[ cosp, (s—r)dW, (r)} ds = Ean J'F (s)ds+
0

n=l 0

© t|s
+EZ szqﬁ J. {J. cos? w,(s=r) dr} ds =
n=1

0LO

> | 1
= ———8in2 +B? +——sin2
Z:: [ ! ,1(2 p unj M (2 J unj

Ky Ky

-~ ;An B, (1-cos2u,, t)} z € [4 +8— (1—cos2u, t)}

n

Therefore,

< N 1
Var (E (1)) = azqn[A,fui(—smmn j+Bnu [ +——sin2u,, j
2 2 4, 2 4,

—lAanun(l—cosmnt)} Za —+—(1 cos2u,t)
2 n=l1 8”;1

is obtained.
The diffusion equation with multiplicative noise. Consider the stochastic
diffusion equations with zero Dirichlet boundary condition

u, =u, +euw,, 0<x<lI,
u(x,0)=f (x),
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where w, is a scalar Brownian motion. We take Hilbert space H =1%(0,1)
with an orthonormal basis e, = V2sin (nmx). We use the method of eigenfunction

expansion:
u(x,0)=>u,(t)e,(x),
U =D 0, (1)8,(x) =Y —u,(H)(nm) e, (x).

Putting these into the above SPDE (2), with A, = (nm)?, we get
Zun (t) en (.X) = Zun (t)(_}\‘n ) en +Ezun (t) en (x) Wl ‘
We further obtain the following system of SODEs:

du,(t)=—A,u,(t)+eu,(t)dw(t), n=1,2,3, ...
Thus

(0=, exp( (2, = Jr+ew(n),

where u (x,0)=f (x)=2<f (x),e,(x)>e,(x)= Zun (0) e, (x). Therefore, the
final solution is:

u(x,0)=2 a,e,(x)exp(b,t +ew,),

witha, =< f (x), e, (x)>and b, =(—xn —;3).

Note that Eexp(b,t+ew,)=exp(b,t) Eexp(ew,)=exp(b,?) eXpG ¢’ tj =

=exp(—A,t). Therefore, we can find out the mean, variance, covariance and cor-
relation of the solution:

E(u(x.0)=Y a,e,(x)exp(~1,1)
Var (u(x,t)) =E(u(x,t)—E(u(x,t)),u(x,t)) - E(u(x,1)))=
= ayexp(=21, D)lexp(e’ 1) ~1].
Fort <t we have
Eexp{e(w, +w, )} =Eexp{e(w, —w, ) +2ew_ }=
~Eexpie(w, ~w, )} Bexp{2ew, } =

=exp {;ez(t—r)} exp {2€2T} =exp {;62[(t+r)+2(t/\r)]}.
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Therefore, by direct calculation, we can get

Cov(u(x,t),u(x,r))=Za5{exp(bn(t+r)+;ez((t+r)+2(t/\r)))+

+exp(—kn(t+r))—exp(_xnf +bnt+; ¢’ tj—exp(—?»ngnt +; ezr)} =

:Zasexp{—kn(t+1:)}[exp{ez(t/\1:)}—1]

and
Cov (u(x,t),u(x,1))

\/Var (u(x, t))\/Var (u(x,7)) B
- > ayexp{-h,(t+1)}[exp{e’ (tAT)} —1]
VS a2 exp (21, Dlexp e’ )-114 Y a2 exp(~2h,Dlexp e’ 1) 1] .

Corr (u(x,t),u(x,t))=

5. Lyapunov Exponents. Lyapunov exponents are tools for quantifying
growth or decay of linear systems (e. g., PDEs or SPDEs). The following discus-
sions are from [2, 3].

A deterministic PDE system. Let us first look at the following deterministic
PDE:

Oy ou, ®)

ot

u(x,0)=1(x), “4)
u(x,t)=0, xeaoD, %)

where D ={x :0<x <1} and the function f € L*(0,1). An orthonormal basis for
I2(0,1) is {e,(x)}, n=0,1,2,..,0 e; == ;e;. Note that 0 < Too. We then
can write:

/= ifj €j» (©)
j=0

where [, :< .€; > By using the method of eigenfunction expansion, it is known
that the unique solution to the problem is given below:

u(x,t)=iexp(z(—xj+a))fjej(x),tzo. (7)
j=0
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Theorem 2. Let us fix a non-zero initial condition f. Let j, be the smallest
integer j =0 in the expansion (6) of fsuch that /', # 0. Then the Lyapunov expo-
nent of the system (3)—(5) exists as a limit and 1s given by A“(f)=-2A j, Tou

Proof Foraclass of initial conditions f'we calculate the Lyapunov expo-
nents, which are defined as

u . 1
A (f)=limsup- log|u(?)|,-.
t—0o0 t

By applying (7), we obtain the Lyapunov exponents regarding to PDE sys-
tem (3)—(5),

S exp(t (. +o)f e, (x)

Jj=0

2(f) =limsup log
t

t—

On the one hand,

l 10g <
t

Z(:)exp(t(—kj +a)) f e, (x)
=

1/2

1 & 2 1

Slog{ D lexp(t (=2 +a)) £ J =~ +o+-log|f].
t J=Jo !

On the other hand,

l]og >
t

Z(:)GXP(t(_xj"'a))fjej(x)
=

1 1
z;log‘exp(t(—lj,(ﬁ a))fjo‘z_kj0+a+;10g‘fjo"

A SPDE system. We now consider the following SPDE

dv =(v,, +PBv)dt+yvdw,, ()
v(x,0)=f(x),xeD, )]
v(x,t)=0,xedD, (10)

where w, is a scalar Brownian motion. The conditions (9) and (10) hold for
a.a. e

We seek the solution with expansion with respect to the basis {e; } (see the

last subsection) ‘

- 11

V(e =Yy (e, (x), (4

j=0
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where y ;(7), forj=0, 1, 2, ... satisfy the following stochastic ordinary differen-
tial equations:

dy [ ()=(=\;+P) y ; (1) dt+vyy ; (1) dw,,
yj(o):fj'
So
0 =expCowenp( (. +B=37 )1 ).
Thus from (11), we obtain,
_N n 4By Fe
v(x, t)—;)exp(ywt)exp(( Ai+B 2y jt)ffef'
Observe that
- _ayly? (12)
v, 0 =exp(nenp( (B0 1 | JuCr.m)

where u (¢, x) is the solution to the above deterministic PDE (3)—(5).
By (12), we can calculate the Lyapunov exponent of the stochastic system

(8)—(10) as a function of the Lyapunov exponent of the deterministic system
(3)—(5) as follows:

. . 1
A (f):hmsup;logHv(t)H:

t—>

=lim sup1 log|lexp (yw, ) exp (((B—a) —;yzj tj u(t)|=

[—0 t

=K”(f)+(B—a)—;v2, as.

by the strong law of large number.

Let us state the result in the following theorem.

Theorem 3. Let f #0. Then the Lyapunov exponent of the SPDE
(8)—(10) almost surely exists as a limit, is non-random and is given in the fol-
lowing formula:

7»”(f)=7»“(f)+(l3—0c)—;y2, as.

Remark 7. Let us consider a special case when o =f3. Then by the above
theorem, for a fixed initial condition £, the Lyapunov exponent of the stochastic
system (8)—(10) is

x”(f)=>»”(f)—;y2,
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which obviously is smaller than the Lyapunov exponent of the corresponding
deterministic system (3)—(5). The result implies that this stochastically per-
turbed system is more stable than the original deterministic system.

6. Impact of Uncertainty. In this section, we first recall some inequalities
for estimating solutions of SPDEs, and then we estimate the impact of noises on
solutions of the nonlinear Burgers equation.

Differential and integral inequalities. Gronwall inequality:Diffe-
rential form [4]. Assuming that y (#)>0, g (¢) and 4 (¢) are integrable, if

ccz’;/ <g(()y+h(t) for t>t,, then
t

fg(t)d‘r t fg('c)d‘c
y ()< y(ty)e® +jh(s)[ef0 lds, t>1,.

lo

In particular, if d <gy+hfor t > t, with g, h being constants and ¢, =0, we have
dt
y(£)< y(0)e® ﬁ(l—egt ), t>0.
g

Note that when constant g < 0, then limy (¢) = —ﬁ.

—00

Gronwall inequality: Integral form [5,6].If u (¢),v(¢)and c (¢)
t

are all non-negative, c (?) is differentiable, and v (¢) < c(¢)+ I u(s)v(s)ds for
0
t>t,, then
f"(T)d‘C t }u(‘r)d‘r
v(£)<v(ty)e” +I c'(s)[e lds, t>1t,.
)

t
In particular, assuming that y () > 0 and is continuous and y (#) <C +K I v (s)ds,
0

with C, K being positive constants, for 7> 0. Then y (£) < CeX, >0,

Sobolev inequalities. We first introduce some common Sobolev spaces.
Fork=1,2, ..., wedefine H*(0,0):={f: 1, [, .., f*) e [*(0, I)}. Each of these
is a Hilbert space with the scalar product

!
(u,v), =I [uv +u'v' + .. +uv® 1 dx,
0

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2009. T. 31. Ne 3 31



J. Duan

and the norm

/
Hqu =,/<u,u>k :\/J. [u2 Jr(u')2 +...+(u(k))2]dx.
0

For k=1,2,... and p>1, we further define another class of Sobolev spaces

WP (D)={u:u,Du, .., D%u e I’ (D), || <k} with norm
1

p J -

p.
Vi3

Moreover, H (’)‘ (0,/)denotes the closure of C(0,/)in H k (0,1)(i.e., under the
norm||-||, ). Itis a sub-Hilbert space in H %(0,1). Similarly, WOk "7(0,1) denotes the
closure of C*(0,7)in W*7(0,1) (i.e., under the norm Il p). It is a sub-Hilbert
space in W57 (0,1).

Standard abbreviations L* = I*(D), H (I)‘ =H {; (D), k=1,2, ..., are used for the

common Sobolev spaces in fluid mechanics, with <., - > and | - | denoting the
usual (spatial) scalar product and norm, respectively, in L2(D):

<f.g>:=[ fedxdy, | | :=N< [, [ >= /_[f(x,y)dxdy.
D D

Cauchy-Schwarz inequality. In the space I*(D) of
square-integrable functions defined on a domain D R":

S\/Ifz(x)dx\/jgz(x)dx.
D D

Holder inequality. Inthe space L' (D) of functions defined on a do-
main Dc R":

P
Jl,, =+

a1, At [

[ F()g(x)dx
D

I I
S(I f(x)pdx]p (I g(x)qu]q :
D D

Minkowski inequality.Inthe space L’ (D)of functions defined on a
domain Dc R":

1 1 1
U f(x)ig(x)pdep sU f (x)pdxjp+[j g(x)deJ” .
D D

D

[ () g (x)dx
D
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Poincaré inequality[4].ForgeH(l)(D),
D D
HgH2 =Ig2(x,y)dxdyﬁj \Vg\zdxdyzuHVgHz
D Th T

where |D|is the Lebesgue measure of the domain D.
Foruel ”’(D) 1< p<oo and D R" a bounded domain | uH < CHVuH

where C is a positive constant depending only on the domain D.
Let ueW"?(D),1< p< o and D = R" abounded convex domain. Let S = D

be a measurable subset, and define the spatial average of u over S by u —1 udx
Sl
(here |S|is the volume or Lebesgue measure of S). Then | u—ug H <C HVuH
where C is a positive constant depending only on the domain D and S.
Agmon inequality[4].LetD < R". There exists a constant C depend-
ing only on domain D such that
1 1
<ClulP . |ul? ..
H2((D) H?2 (D)

o] == D) , for n odd,

1 1
<jul?,, [ul? ..
H 2 (D) H 2 (D)

o] = D) , for n even.

In particular, for n =1 and ue H'(0,1),

1

HMHL 0,7) — CH u HLZ(O I)H HH (0 l)

Moreover, forn=1andue H (1)(0, D),

1

Cllul

Jil = oy SCll ot 2 | Hm

Stochastic Burgers equation.We now consider the Burgers equation with
additive noise forcing as in [7]:
O u+ud u=vd2u+cW,,
u(0,6)=0,u(l,t)=0, u(x,0)=uy(x),

where W, is a Brownian motion, with covariance Q, taking values in the Hilbert
space L*(0, /) with the usual scalar product(-,-). We assume that the trace 7r (Q)
is finite. So I, is noise colored in space but white in time.
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Taking
F(u) =1Jl. u’dx ! (u,u)
25 2

and applying the Ito’s formula, we obtain

;d | uH2 =(u,cdW,) +[<u,vum— uu,) +;GZZTF (Q)} dt.
Thus

;{E uH2 =2(u,vu, —uu,) +021Tr (Q)=-2v Hutz +o2ITr (0).
t

By the Poincare inequality || u H2 <c|| utz for some positive constant depending
only on the interval (0, /), we have

LB uf? <=2 |ul +0*1Tr ()
dt c

Then using the Gronwall inequality, we finally get
E 2,
Bl u|’ <E|u|’e ¢ +§co21Tr(Q)[1—e 1.

Note that the first term in this estimate involves the initial data, and the second
term involves the noise intensity ¢ as well as the trace of the noise covariance.

We finally consider the Burgers equation with multiplicative noise forcing
& ,u+ud .u=vd>u-+oww,, with the same boundary condition and initial condi-

tion as above, where w, is a scalar Brownian motion (e. g., with covariance 0 =1
and the trace 77 (Q)=1). So W, is noise homogeneous in space but white in time.

By the Ito’s formula, we obtain

;d ul? :<u,0udw,>+[<u,vuxx —uux>+;62 uz} dr
Thus

d 2 20 12 2 20 2 2 2v 2
LBl =2t s )+ 0] =2 0] < o j

Therefore,
-2,
2 2 B
Bllu]” <Bfu| e( )
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Note here that the multiplicative noise affects the mean energy growth or de-
cay rate, while the additive noise affects the mean energy upper bound.

Likelihood for staying bounded. By the Chebyshev inequality, we can esti-
mate the likelihood of solution orbits staying inside or outside a bounded domain
in Hilbert space H = I7(0, /). Taking the bounded domain as a ball centered at the

origin with radius & > 0. For example, for the above Burgers equation with
multiplicative noise, we have

1 I [, @-2)
P(m:uZS)SzEMZS;e( ‘)
5 5
and
2v
EHuone(sz—jt.

P(o:]|ul|<d)=1-P(w:|u|>6) =1~ 52 ¢

I would like to thank Hongbo Fu and Jiarui Yang for helpful comments.

PosrsHyTO Aeski METOaM NMPEACTABICHHS PO3B'A3KIB CTOXACTHUYHUX JU(EPEHIIABHIX PIBHIHD Y
YaCTHHHUX IOXiTHUX, 30KpeMa Y 3ajadax KOpeJsiLii OLiHKM, eKCHOHEHTH JIAmyHOBa Ta BIUIUBY
1rymiB. MeToau npuaaTHi JUis po3yMiHHI epeadadyBaHOCTI Y IPOCTOPOBO PO3IOIIJICHUX CHCTE-
Max 3 HeBU3HAYCHICTIO MOJICI, HANIPHUKIIAM, Y (izuili, reodisuili Ta G10JOTTYHIX HAyKaXx.

1. Zeidler E. Applied Functional Analysis: Applications to Mathematical Physics. — New
York: Springer, 1995.

2. Caraballo T., Langa J. A Comparison of the Longtime Behavior of Linear Ito and Stra-
tonovich Partial Differential Equations // Stochastic Anal. Appl. — 2001.—19, Ne 2. —
P. 183—195.

3. Kwiecifinska A. A. Stabilization of Evolution Equations by Noise//Proc. Amer. Math. Soc. —
2002. — 130, Ne 10. — P. 3067—3074.

4. Temam R. Infinite-dimensional Dynamical Systems in Mechanics and Physics. — New
York: Springer-Verlag, Second Edition, 1997.

5. Coddington E. A., Levinson N. Theory of Ordinary Differential Equations. — New York
McGraw Hill, 1955.

6. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations
of Vector Fields. — New York: Springer-Verlag, 1983.

7. Blomker D., Duan J. Predictability of the Burgers Dynamics under Model Uncertainty. In
Boris Rozovsky 60th Birthday Volume Stochastic Differential Equations: Theory and Ap-
plications, P. Baxendale and S. Lototsky (Eds.) — New Jersey: World Scientific, 2007. —
P.71—90

Iocrynuna 08.12.08

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2009. T. 31. Ne 3 35



