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REGULAITY OF INFINITE DIMENSIONAL
HEAT DYNAMICS OF UNBOUNDED LATTICE SPINS
WITH NON-CONSTANT DIFFUSION COEFFICIENTS

Below we demonstrate how the C∞-regular properties of heat dynamics with
non-unit nonlinear diffusion coefficient can be studied. We consider an infinite
dimensional model, describing evolution of unbounded lattice spins IRZZd

. As a
main step we provide a construction of corresponding variational processes in
ℓp(c) spaces with growing weights ck ∼ ea|k|, k ∈ ZZd.

Developing the approach of nonlinear estimates on variations, we find suffi-
cient conditions on the nonlinear coefficients of differential equation that lead to
C∞-regularity of solutions with respect to the initial data and C∞-regularity of
corresponding heat semigroup.
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1. Introduction.

It is already known, e.g. [7, 8], that for the stochastic differential

equations

dy0 = B(y0)dWt − F (y0)dt, y0(0) = x0 (1)

with coefficients, that are globally Lipschitz and have all bounded

derivatives, there is C∞-regularity of solutions y0
t (x

0) with respect to

the initial data x0. Moreover, corresponding heat semigroup, defined

as a mean Ptf(x0) = E f(y0
t (x

0)) with respect to the Wiener measure,

preserves spaces of continuously differentiable functions with bounded

derivatives. These results follow from application of fixed point and

implicit function theorems to variations yj
t (x) =

∂jy0
t (x

0)

∂(x0)j
of process

y0
t (x

0) with respect to the initial data x0.

The consideration of more wide class of stochastic differential

equations with essentially nonlinear non-Lipschitz coefficients leads
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to a monotone conditions of coercitivity and dissipativity: ∀C >
0 ∃M such that

coercitivity < F (x) − F (y), x− y > −

−C‖B(x) − B(y)‖2 ≥ −M‖x− y‖2

dissipativity < F (x), x > −C‖B(x)‖2 ≥ −M(1 + ‖x‖2),

that are sufficient for the existence, uniqueness and continuous de-

pendence of solutions with respect to the initial data [10, 11].

In [2, 4, 5] it was shown that the application of Cauchy-Liouville-

Picard scheme to the problem of C∞-regularity for non-Lipschitz

differential equations meets difficulties. Here we discussed a particular

case of system (1) with constant diffusion coefficient B = 1, that has

important applications to the classical Gibbs lattice systems with

unbounded spins. To be able to work with such nonlinear differential

equations we followed [8, 9], where, after the shift ηt = yt − Wt,

equation (1) becomes ordinary differential equation on variable ηt:

dηt = −F (ηt +Wt)dt

with random control Wt.

In [2, 4, 5] we found that due to the structure of the associated

with (1) variational system






dyi =
∑

j1+...+js=i,
s ≥ 1

B(s)(y0)yj1..yjsdW −
∑

j1+...+js=i,
s ≥ 1

F (s)(y0)yj1..yjsdt

y1(0) = Id, yi(0) = 0, i ≥ 2

(2)

the variation of Nth order is proportional to the Nth power of the

variation of 1st order.

Such proportionality led to nonlinear estimates on variations

ρn(t) =

n∑

j=1

E pj(‖y(t)‖) ‖y
j(t)‖

m/j
Xj

≤ eMtρn(0), (3)

permitting to apply monotone methods to the problem of C∞-regula-

rity. The weights pj and topologies Xj on variations were found to be

related with the order of nonlinearity of coefficients of initial equation



Regularity of infinite dimensional heat dynamics 103

(1). Moreover, the order of nonlinearity also influenced the structure

of topologies in the spaces of differentiable functions, preserved by

heat semigroup Pt.

In [2] it was observed that the variations should be constructed

in spaces ℓp(c) with exponentially growing on lattice ZZd weights, i.e.

ck ∼ ea|k|, k ∈ ZZd. For diffusion coefficient B = I this property

follows from Kato results about the construction of solutions to the

linear ordinary differential equations. For B = I terms with B(s) =
0 for s ≥ 1 in (2) are absent and (2) becomes non-autonomous

inhomogeneous linear equation on variable yi with control y0
t .

The use of process η and application of Kato results becomes

impossible for non-constant diffusion coefficient B 6= I. The solution

of this problem is a main topic of this article.

In Section 2 we describe a model with non-constant nonlinear

diffusion coefficient and state main results about the properties of

variations of diffusion process and regularity of its semigroup. In

Section 3 we define the stochastic integrals
∫ t

0
BsdWs with B ∈ ℓp(c)

and construct the nonlinear diffusion and its variations with respect

to the initial data. In Section 4 we prove nonlinear estimate (3).

Section 5 is devoted to the study of continuity and C∞ regularity of

variations with respect to the initial data. Here we also demonstrate

the regularity of heat semigroup Pt (proof of Theorem 1).

Finally remark, that even the problem of the first order re-

gularity with respect to the initial data is still under question for

more general classes of stochastic differential equations, e.g. [6] and

references therein.

2. Basic model and statement of main results.

We consider the stochastic process on the lattice product of

spin spaces IRZZd

=
∏

k=(k1,...,kd)∈ZZd IR1, described by the following

nonlinear equation

y0(t) = x0 +

∫ t

0

B(y0(s))dW (s) −

∫ t

0

[F (y0(s)) + Ay0(s)]ds (4)

Nonlinear diagonal maps

IRZZd

∋ x = {xk}k∈ZZd −→ B(x) = {B(xk)}k∈ZZd ∈ IRZZd
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IRZZd

∋ x = {xk}k∈ZZd −→ F (x) = {F (xk)}k∈ZZd ∈ IRZZd

are generated by smooth functions B,F ∈ C∞(IR1) of polynomial

with derivatives behaviour and the linear finite diagonal map A :

IRZZd

→ IRZZd

is defined by

∃r0 (Ax)k =
∑

j: |j−k|≤r0

A(k − j)xj , k ∈ ZZd

and is bounded in any space ℓp(c), sup|k−j|=1 |ck/cj| <∞.

The cylinder Wiener process W = {Wk(t)}k∈ZZd with values in

ℓ2(a),
∑

k∈ZZd ak = 1, a ∈ IP is canonically realized on measurable

space (Ω = C0([0, T ], ℓ2(a)),F ,Ft,P) with canonical filtration Ft =
σ{W (s)|0 ≤ s ≤ t} and cylinder Wiener measure P. Processes

Wk, k ∈ ZZd are independent IR1-valued Wiener processes. Henceforth

we denote by E the expectation with respect to measure P and by IP
the set of all vectors a = {ak}k∈ZZd such that δa = sup

|k−j|=1

|ak/aj| <∞.

Let us impose the following conditions on the coefficients {F,B}.

1. Coercitivity and dissipativity: ∀M ∃KM , K1, K2 such that

(x− y)(F (x) − F (y))−M(B(x) − B(y))2 ≥ KM(x− y)2 (5)

xF (x) −M B2(x) ≥ −K1x
2 −K2 (6)

Inequality (5) implies in particular that ∀M ∃KM

−F ′(x) +M [B′(x)]2 ≤ KM (7)

2. Nonlinear parameters: Function F : IR1 → IR1 is monotone

and ∃kF ,kB ≥ −1 with 2kB ≤ kF such that ∀n ∈ IN ∃Cn

∀i = 0, ..., n ∀x, y ∈ IR1

|F (i)(x) − F (i)(y)| ≤ Cn|x− y|(1 + |x| + |y|)kF (8)

|B(i)(x) −B(i)(y)| ≤ Cn|x− y|(1 + |x| + |y|)kB (9)

Main result is that under the above conditions the heat diffusion

semigroup

(Ptf)(x) = E f(y0(t, x0)) (10)
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preserves spaces of continuously differentiable functions, which topo-

logies depend on the order of nonlinearity kF . This result generalizes

[1, 3, 2], where the unit diffusion case B(x) = 1 was considered.

Let us say that array Θ = Θ1∪ ...∪Θn, n ∈ IN with Θm be a set

of pairs of mth-order (p,G = G1 ⊗ ...⊗Gm), Gi ∈ IP , i = 1, ..., m, is

quasi-contractive with parameter kF if ∀m = 2, ..., n ∀(p,G) ∈ Θm and

∀i, j ∈ {2, ..., m}, i < j there is a pair (p̃, G̃ = G̃1⊗...⊗G̃m−1) ∈ Θm−1

such that ∃K ∈ IR+

∀z ∈ IR+ (1 + z)
kF +1

2 p̃(z) ≤ K p(z) (11)

(Ĝ{i,j})ℓ ≤ K G̃ℓ, ℓ = 1, ..., m− 1 (12)

Above p, p̃ are smooth functions of polynomial behaviour (27) and

inequality (12) is understood as a coordinate inequality between (m−
1)th order tensors for (m− 1)-tensor

Ĝ{i,j} = G1⊗...⊗Gi−1⊗Gi+1⊗...⊗Gj−1⊗a−(kF +1)GiGj⊗Gj+1⊗...⊗Gm

constructed by m-tensor G = G1 ⊗ ...⊗Gm.

Definition 1. Function f ∈ DΘ,r(ℓ2(a)), r ≥ 0, iff
1. There is a set of Borel measurable partial derivatives

ℓ2(a) ∋ x→ ∂τf(x) ∈ IR1 ∀τ = {j1, ..., js}, |τ | ≤ n (13)

such that ∀x0 ∈ ℓ2(a), ∀h ∈ AC([a, b])

f(x0 + h(·))

b

a

=

∫ b

a

ds
∑

k∈ZZd

∂kf(x0 + h(s))h′k(s) (14)

and ∀τ |τ | ≤ n− 1

∂τf(x0 + h(·))

b

a

=

∫ b

a

ds
∑

k∈ZZd

∂τ∪{k}f(x0 + h(s))h′k(s) (15)

Here we used notation

AC([a, b]) = ∩
p≥1, c∈IP

AC([a, b], ℓp(c)) (16)
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for

AC([a, b], X) = {h ∈ C([a, b], X) : ∃h′ ∈ L1([a, b], X)}

2. The norm is finite

‖f‖DΘ,r
= ‖f‖Lipr + max

m=1,...,n
‖∂(m)f‖Θm <∞ (17)

where

‖f‖Lipr = sup
x∈ℓ2(a)

|f(x)|

(1 + ‖x‖ℓ2(a))r+1
+ (18)

+ sup
x,y∈ℓ2(a)

|f(x) − f(y)|

‖x− y‖ℓ2(a)(1 + ‖x‖ℓ2(a) + ‖y‖ℓ2(a))r

and for multifunction of mth order ∂(m)f(x) = {∂τf(x), |τ | = m}

‖∂(m)f‖Θm = sup
x∈ℓ2(a)

max
(p,G)∈Θm

|||∂(m)f(x)|||G
p(1 + ‖x‖2

ℓ2(a))
(19)

with |||∂(m)f(x)|||2G =
∑

τ={j1,...,jm}⊂ZZd

G1
j1...G

m
jm
|∂τf(x)|2 for G = G1 ⊗

...⊗Gm.

Theorem 1. Let F,B satisfy conditions (5)-(9) and Θ = Θ1∪...∪Θn,
n ∈ IN be quasi-contractive array with parameter kF . Suppose that
function f ∈ DΘ,r(ℓ2(a)), r ≥ 0, i.e.
Then ∀ ≥> 0 semigroup Pt preserves scale of spaces DΘ,r(ℓ2(a)), r >
0 and there are KΘ,r, MΘ,r such that

∀f ∈ DΘ,r(ℓ2(a)) ‖Ptf‖DΘ,r
≤ KΘ,re

MΘ,rt‖f‖DΘ,r
(20)

The formal differentiation of (10) with respect to x0 shows that

the derivatives of semigroup is related with the variations of process

y0
t with respect to the initial data x0. Let τ = {j1, ..., jn}, js ∈ ZZd

be any ordered array of points from ZZd. To the set τ we associate

vector yτ = {yk,τ}k∈ZZd, which satisfies equation

yk,τ = x̃k,τ +
∫ t

0
(B′(y0

k)yk,τ + ϕB
k,τ)dWk−

∫ t

0
(F ′(y0

k)yk,τ + (Ayτ)k + ϕF
k,τ)ds, k ∈ ZZd,

(21)
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derived by differentiation of (4) with respect to variables {x0
jn
, ..., x0

j1
}.

Above the inhomogeneous parts ϕB
τ and ϕF

τ are constructed from

functions B and F by the following rule

ϕD
k,τ =

∑

γ1∪...∪γs=τ, s≥2

D(s)(y0
k)yk,γ1

...yk,γs, (22)

where yγ1
, ..., yγs are the solutions of lower rank variational equations.

Summation in (22) runs on all possible subdivisions of set τ={j1,..,jn}
on the nonintersecting subsets γ1, ..., γs ⊂ τ, |γ1|+...+|γs| = |τ |, s ≥
2, |γi| ≥ 1.

To prove Theorem 1 it is necessary to find the joint topologies

for solvability of system in variations (21), and to check that at the

special choice of initial data in (21)

x̃k,τ = δkj for τ = {j}, |τ | = 1 and x̃k,τ = 0 for |τ | ≥ 2 (23)

the variation yτ is interpreted as a derivative of y0 with respect to x0

∂|τ |y0
k(t, x

0)

∂x0
jn
...∂x0

j1

= yk,τ (24)

Equation (21) possesses a certain nonlinear symmetry with res-

pect to the lower rank variations, where the ith order variation and

the ith degree of the first order variation appear simultaneously. Like

in [2] introduce the following nonlinear object

ρτ (y; t) = E

n∑

i=1

pi(zt)
∑

γ⊂τ, |γ|=i

‖yγ‖
mγ

ℓmγ (cγ) (25)

where the set τ = {j1, ..., jn}, ji ∈ ZZd, zt = 1 + ‖y0(t, x0)‖2
ℓ2(a) and

mγ = m1/|γ|.
Impose the following hierarchy of weights pi, cτ . It is dictated by

the unbounded operator coefficients with control y0 in (21), (22) and

depends on the order of nonlinearity kF ≥ 2kB:

1. The vectors cγ = {ck,γ}k∈ZZd ⊂ IP fulfill

∀α ⊂ τ ∀γ1∪ ...∪γs = α ∀s ≥ 2 ∃Kγ1,...,γs;α such that ∀k ∈ ZZd

[ck,α]|α|a
−
kF +1

2
m1

k ≤ Kγ1,...,γs;α[ck,γ1
]|γ1|...[ck,γs]

|γs| (26)
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2. Positive monotone functions pi ∈ C∞(IR+) of polynomial be-

haviour

∃ε > 0 ∀z ∈ IR+ pi(z) ≥ ε p′i(z) ≥ ε

∃C (1 + z)|p′′i (z)| ≤ Cp′i(z) (1 + z)p′i(z) ≤ Cpi(z) (27)

satisfy condition

∃Kp ∀j ∈ {2, ..., n} ∀i1, ..., is, s ≥ 2 i1 + ...+ is = j

[pj(z)]
jz

kF +1

2
m1 ≤ Kp[pi1(z)]

i1 ...[pis(z)]
is , z ∈ IR+ (28)

Theorem 2. Let F,B satisfy conditions (5)-(9) and y0, yτ be solutions
to (4) and (21) for x0 ∈ ℓ2(a) and zero-one initial data x̃γ (23).
Suppose that hierarchies (26) and (28) are valid.

Then the nonlinear quasi-contractive estimate holds

∃M = Mτ ∀t ≥ 0 ρτ (y; t) ≤ eMtρτ (y; 0) (29)

3. ℓp(c)-valued stochastic integrals and construc-
tion of diffusion process and its variations.

In the following Lemma we construct ℓp(c)-valued stochastic

integral, appearing in (21), and prove Ito formula for the norm of

ℓp(c)-valued continuous processes. This result will permit to work

correctly with variations yτ in ℓmτ (cτ ) scales, arising in nonlinear

expression (25).

Lemma 1. Let Φ(t), Ψ(t) be Ft-adapted processes with values in
ℓp(c), c ∈ IP , p ≥ 1 such that

∀q ≥ 1, sup
t∈[0,T ]

E (‖Φ(t)‖q
ℓp(c) + ‖Ψ(t)‖q

ℓp(c)) <∞

Then the process, defined by coordinates

ηk(t) = ηk(0) +

∫ t

0

Φk(s)dWk(s) +

∫ t

0

Ψk(s)ds
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for η(0) ∈ Lq(Ω,P, ℓp(c)), belongs to the space of continuous Ft-
adapted processes, equipped with the norm (E sup

t∈[0,T ]

‖ · ‖q
ℓp(c))

1/q and

Ito formula is fulfilled

‖η(t)‖q
ℓp(c) = ‖η(0)‖q

ℓp(c)+

+q
∫ t

0
‖η(s)‖q−p

ℓp(c) < η⋆(s), η(s)Φ(s)dW (s) >ℓp(c) +

+q
∫ t

0
‖η(s)‖q−p

ℓp(c) < η⋆(s), η(s)Ψ(s) + p−1
2

Φ2(s) >ℓp(c) ds+

+ q(q−p)
2

∫ t

0
‖η(s)‖q−2p

ℓp(c)

∑
k∈ZZd

c2k|ηk(s)|
2p−2Φ2

k(s)ds

(30)

where we used notation

< η⋆, y >ℓp(c)=
∑

k∈ZZd

ck|ηk|
p−2yk (31)

Moreover ∀q ≥ p ≥ 2 ∀T > 0 ∃Kq,T such that

E sup
t∈[0,T ]

‖

∫ t

0

Φ(s)dW (s)‖q
ℓp(c) ≤ Kq,T

∫ T

0

E ‖Φ(t)‖q
ℓp(c)dt (32)

Remark 1. First note that the coefficients of diffusion process B(xk)
and F (xk) are transition invariant. Therefore the required by Lemma

1 inclusions {B(xk)}k∈ZZd, {F (xk)}k∈ZZd ∈ ℓp(a) lead to the require-

ment
∑

k∈ZZd ak <∞ on topologies of spaces ℓp(a), where the initial

diffusion process (4) can be constructed.

On the contrary, we do not have restrictions on the weights in

spaces ℓp(c) for variational processes yτ . Indeed, the principal part of

variational equations has form {B′(xk)yk,τ}k∈ZZd, {F ′(xk)yk,τ}k∈ZZd ,

i.e. has additional factor yτ . Due to the zero-one initial data for

variational equations (23), there is an inclusion yτ (0) ∈ ℓp(c) for

any c ∈ IP . Therefore, it becomes possible to construct variations in

any space ℓp(c).
This is also important for the study of regularity properties of

semigroup, because in Lemma 2 we need the estimates on variations,

which grow exponentially fast ck ∼ ea|k|, k ∈ ZZd.
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Proof. First of all note that for any vector h ∈ ℓp(c), c ∈ IP
the process {hkWk(t, ω)}k∈ZZd = hW (t, ω) has P a.e. ω ∈ Ω ℓp(c)-
valued continuous on t ∈ [0,∞) paths. This fact follows from the

Kolmogorov theorem and estimates

E ‖hW (t)‖q
ℓp(c) ≤ (

∑
k∈ZZd

ckh
p
k)

(q−p)/p
E (

∑
k∈ZZd

ckh
p
k|Wk(t)|

q) =

= ‖h‖q
ℓp(c)t

q/2
E |W0(1)|q <∞

E ‖h(W (t) −W (s))‖q
ℓp(c) = E (

∑

k∈ZZd

ckh
p
k|W (t) −W (s)|p)q/p ≤

≤ (
∑

k∈ZZd

ckh
p
k)

(q−p)/p
E (

∑
k∈ZZd

ckh
p
k|Wk(t) −Wk(s)|

q) =

= ‖h‖q
ℓp(c)(t− s)q/2

E |W0(1)|q <∞

where we used Hölder inequality and the properties of cylinder Wiener

process, W0 is a Wiener process at point 0 ∈ ZZd of lattice.

Now consider the Ft-adapted process

H̃(t) = H i, for t ∈ (ti, ti+1], i ≥ 0, and H̃(t0) = H0 for t0 = 0,

where all H i are Fti-measurable and H i ∈ L∞(Ω,P; ℓp(c)). Then due

to the continuity of terms H i(ω)(W (t, ω) −W (ti, ω)) the stochastic

integral, defined by

Z̃k(t) = {
∫ t

0
H̃(s)dW (s)}k =

=
i−1∑
j=0

Hj
k(Wk(tj+1) −Wk(tj)) +H i

k(Wk(t) −Wk(ti)), t ∈ (ti, ti+1]

and Z̃k(0) = 0 has ℓp(c) pathwise continuous version and is a martin-

gale.

Therefore for ℓp(c)-valued continuous martingale Z̃(t) due to [8,

Th.3.8] we have inequality

E sup
t∈[0,T ]

‖Z̃(t)‖q ≤ (
q

q − 1
)q sup

t∈[0,T ]

E ‖Z̃(t)‖q (33)

where the r.h.s. norm is finite by assumptions on H i ∈ L∞.
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By Ito formula for f(Z̃(t)) = ‖Z̃(t)‖q
ℓp(c)

f(Z̃(t)) = f(Z̃(0))+ q

∫ t

0

‖Z̃(s)‖q−p
ℓp(c)

∑

k∈ZZd

ck|Z̃k(s)|
p−1H̃k(s)dWk(s)+

+
q(p− 1)

2

∫ t

0

‖Z̃(s)‖q−p
ℓp(c)

∑

k∈ZZd

ck|Z̃k(s)|
p−2H̃2

kds+

+
q(q − p)

2

∫ t

0

‖Z̃(s)‖q−2p
ℓp(c)

∑

k∈ZZd

c2k|Z̃k(s)|
2(p−1)H̃2

k(s)ds

and due to
∑

|dkbk| ≤
∑

|dk|
∑

|bk| one has

E ‖Z̃(t)‖q
ℓp(c) ≤

q(q − 2)

2
E

∫ t

0

‖Z̃(s)‖q−2
ℓp(c)‖H̃(s)‖2

ℓp(c)ds

Finally, using (33), we obtain

E sup
t∈[0,T ]

‖Z̃(t)‖q
ℓp(c) ≤

≤ ( q
q−1

)q q(q−1)
2

E sup
t∈[0,T ]

‖Z̃(t)‖q−2
ℓp(c)

∫ T

0
‖H̃(s)‖2

ℓp(c)ds ≤

≤ Kq(E sup
t∈[0,T ]

‖Z̃(t)‖q
ℓp(c))

(q−2)/q(E (
∫ T

0
‖H̃(s)‖2

ℓp(c)ds)
q/2)2/q

This leads to

E sup
t∈[0,T ]

‖Z̃(t)‖q
ℓp(c) ≤ K

q/2
q E (

∫ T

0
‖H̃(s)‖2

ℓp(c)ds)
q/2 ≤

≤ K
q/2
q T (q−2)/q

∫ T

0
E ‖H̃(s)‖q

ℓp(c)ds

and gives the statement of theorem for all functions of H̃ type. Due

to their density, closing inequality (32) we have the definition of

stochastic integral and inequality (32) for all Φ. Moreover, the martin-

gale property of Z(t) and its P a.e. continuity is a simple consequence

of estimate (32)

E sup
t∈[0,T ]

‖

∫ t

0

H̃1dW −

∫ t

0

H̃2dW‖q
ℓp(c) ≤ Kq,T

∫ T

0

E ‖H̃1 − H̃2‖
q
ℓp(c)dt
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which gives uniform on [0, T ] convergence on measure and therefore

P a.e. convergence on subsequence.

To prove Ito formula, first note that

|ηk(s)|
p = |ηk(0)|p + p

∫ t

0
|ηk(s)|

p−1{Φk(s)dWk(s)+

+Ψk(s)ds} + p(p−1)
2

∫ t

0
|ηk(s)|

p−2Φ2
k(s)ds

Summing up on k ∈ ZZd with weights ck we have Ito formula for

‖ηk(t)‖
p
ℓp(c) which immediately gives (30). 2

Theorem 3. For x0 ∈ ℓ
p(kF +1)2+ε

(a), ε > 0, p ≥ 2, equation (4)

has a unique strong solution, i.e. Ft-adapted continuous ℓp(a)-valued
process y0, which satisfies (4) in the sense of (E sup

t∈[0,T ]

‖ · ‖q
ℓp(a))

1/q

topology, q ≥ 2. It admits a representation as a sum of ℓp(a)-valued

continuous martingale M0(t) =
∫ t

0
B(y0)dW and ℓp(a)-valued conti-

nuous finite variation process V0(t) = −
∫ t

0
(F (y0)+Ay0)ds and fulfills

estimate
∀q ≥ 2 sup

t∈[0,T ]

E ‖y0‖q
ℓ
p(kF +1)

(a) <∞ (34)

For x0 ∈ ℓp(a) there is a unique generalized solution y0(t, x0),
i.e. a limit of strong solutions in the sense of ( sup

t∈[0,T ]

E ‖ · ‖q
ℓp(a))

1/q

topology, q ≥ 2 and the following estimate holds

∀q ∃Cq,p, Dq,p :
sup

t∈[0,T ]

E ‖y0(t, x0)‖q
ℓp(a) ≤ eCq,pT (‖x0‖q

ℓp(a) +Dq,p) (35)

Moreover

∃C ′
q,p ∀x0, y0 ∈ ℓp(a) :

sup
t∈[0,T ]

E ‖y0(t, x0) − y0(t, y0)‖q
ℓp(a) ≤ eC′

q,pT‖x0 − y0‖q
ℓp(a)

(36)

Remark, that the construction of solution y0(t, x0) in the ℓp(a),
p ≥ 2 spaces is required for the proof of differentiability with respect

to the initial data.

Proof is quite standard. It uses some infinite-dimensional Lipschitz

approximations of equation (4) with a successive application of mo-

notone methods, like in [10, 11]. Being a little technical result, it is

ommitted. 2
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Theorem 4. Let m1 > |τ |, mγ = m1/|γ| and vectors {cτ} ⊂ IP fulfill
(26). Then ∀x0 ∈ ℓ2(a) and zero-one initial data x̃γ (23) the equation
(21) has a unique strong solution yτ in space ℓmτ (cτ ), i.e. there is Ft-
adapted ℓmτ (cτ )-valued continuous process yτ(t, x

0; x̃γ , γ ⊂ τ) such
that it fulfills equation (21) in the sense of (E sup

t∈[0,T ]

‖ · ‖q
ℓmτ (cτ ))

1/q

topology, q ≥ mτ .
It is represented as a sum of ℓmτ (cτ ) continuous martingale

Mτ (t) =
∫ t

0
(B′(y0)yτ + ϕB

τ )dW and ℓmτ (cτ ) continuous finite va-

riation process V0(t) = −
∫ t

0
(F ′(y0)yτ + Ayτ + ϕF

τ )ds. Moreover, the
following estimate holds: ∀q ≥ mτ ∀R > 0 ∃Kτ (R) such that

sup
t∈[0,T ]

E ‖yτ(t, x
0; x̃γ , γ ⊂ τ)‖q

ℓmτ (cτ ) ≤ Kτ (R) (37)

for R = max(‖x0‖ℓ2(a); ‖x̃γ‖ℓmγ (cγ), γ ⊂ τ).

Proof. The solvability of equations (21) is obtained inductively with

respect to the number of points in set τ = {j1, ..., jm}, ji ∈ ZZd. First

of all note that at |τ | = 1 the inhomogeneous parts ϕB
τ ≡ ϕF

τ ≡ 0
and the proof of inductive base coincides with the proof of inductive

step.

We prove more general result: if for any γ ⊂ τ, |γ| < |τ | the

statement of Theorem 4 holds in scale {ℓmγ (d
icγ)}γ⊂τ for any i ≥

0, then the same is true for τ . Vector d ∈ IP is such that dk ≥

a
−(

kF +1

2
+ε)m1

k for some ε > 0.

Introduce notations F ′
λ(x) = λ(x)F ′(x) and B′

λ(x) = λ(x)B′(x)
for λ ∈ C∞(IR1, [0, 1]) such that for some Nλ > 0

λ(x) = 0 for |x| ≥ Nλ + 1 and λ(x) = 1 for |x| ≤ Nλ (38)

and consider the approximating equation to (21)

yλ
k,τ(t) = x̃k,τ +

∫ t

0
{B′

λ(y
0
k)y

λ
k,τ + ϕB

k,τ}dWk−

−
∫ t

0
{F ′

λ(y
0
k)y

λ
k,τ + (Ayλ

τ )k + ϕF
k,τ}ds

(39)

Remark that hierarchy (26) holds for vectors {dicγ} at any fixed i ≥ 0
and that the zero-one initial data x̃γ ∈ ℓmγ (dicγ) at any i ≥ 0.
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Step 1. Equation (39) has a unique strong solution yλ
τ in space

ℓmτ (d
icτ ), i.e. there is Ft-adapted ℓmτ (d

icτ )-valued pathwise conti-
nuous process

yλ
τ (t, x0; x̃γ, γ ⊂ τ)

such that it fulfills equation (39) in the sense of (E sup
t∈[0,T ]

‖·‖q
ℓmτ (dicτ ))

1/q

- topology, q ≥ mτ , and admits a representation as a sum of conti-
nuous martingale Mλ

τ (t) =
∫ t

0
{B′

λ(y
0)yλ

τ + ϕB
τ }dW and continuous

finite variation process V λ
τ (t) = −

∫ t

0
{F ′

λ(y
0)yλ

τ + Ayλ
τ + ϕF

τ }ds.
Indeed, in the Banach space of Ft-adapted ℓmτ (d

icτ )-valued path-

wise continuous processes η(t) equipped with a norm

‖η‖τ,i = (E sup
t∈[0,T ]

‖η(t)‖q
ℓmτ (dicτ ))

1/q

introduce a map

(Uη)k(t) = x̃k,τ +

∫ t

0

ϕB
k,τdWk −

∫ t

0

ϕF
k,τds+ (40)

+

∫ t

0

B′
λ(y

0
k)ηk(s)dWk(s) −

∫ t

0

{F ′
λ(y

0
k)ηk(s) + (Aη)k(s)}ds

By Lemma 1 and due to the boundedness of coefficients F ′
λ, B

′
λ

and

‖A‖L(ℓmτ (dicτ )) <∞ we have

ρT (Uη1,Uη2) ≡ E sup
t∈[0,T ]

‖Uη1 − Uη2‖q
ℓmτ (dicτ )

≤

≤Mτ,λ,T

∫ T

0

E ‖η1(s) − η2(s)‖q
ℓmτ (dicτ )

ds ≤Mτ,λ,T

∫ T

0

ρs(η
1, η2)ds

Therefore ρT (Umη1,Umη2) ≤
Mm

τ,λ,T

m!
TmρT (η1, η2) and there is m0

such that the map Um0 is a strict contraction in ‖ · ‖τ,i. For η0 ≡ 0
by Lemma 1 we have

‖Uη0‖τ,i ≤ ‖x̃τ‖ℓmτ (dicτ )+

+C1 sup
t∈[0,T ]

(E ‖ϕB
τ ‖

q
ℓmτ (dicτ )

)1/q + C2 sup
t∈[0,T ]

(E ‖ϕF
τ ‖

q
ℓmτ (dicτ )

)1/q
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Above we used inequality

[
E (
∫ T

0
‖Zs‖ds)

q
]1/q

≤

≤ T (q−1)/q
(
E
∫ T

0
‖Zs‖

qds
)1/q

≤ T

(
sup

t∈[0,T ]

E ‖Zt‖
q

)1/q (41)

for any Ft-adapted Banach space valued process Zt.

By [2, Theorem 4.15] with Q(·) = F (s)(·) or B(s)(·), ζ0 = ζγ1
=

... = ζγs = 0, s = ℓ and Hölder inequality with ri = |τ |+1
|γi|

, i = 1, ..., s,

r0 = |τ | + 1 imply for ϕD = ϕF or ϕB (22)

( sup
t∈[0,T ]

E ‖ϕD
τ ‖

q
ℓmτ (dicτ )

)1/q ≤

≤ K
∑

γ1,...,γs

( sup
t∈[0,T ]

E (1 + ‖y0‖ℓ2(a))
q(kF +1)r0)1/qr0×

×
s∏

j=1

( sup
t∈[0,T ]

E (1 + ‖yγj
‖ℓmγj

(dicγj ))
qrj )1/qrj

(42)

which gives ‖Uη0‖τ,i <∞ by (35) and inductive assumption. Therefore

the sequence {Umη0}m≥1 converges in ‖ · ‖τ,i to some Ft-adapted

ℓmτ (d
icτ )-valued pathwise continuous process yλ

τ . By Lemma 1 se-

quence (40) converges to (39) with corresponding martingale and

finite variation parts.

Step 2. ∀i ≥ 0 ∀q ≥ 1 ∃Cτ such that

sup
λ

sup
t∈[0,T ]

E ‖yλ
τ ‖

q
ℓmτ (dicτ ) ≤ Cτ (43)

where supremum is taken over all functions λ ∈ C∞(IR1, [0, 1]), which
fulfill (38).

Indeed, by Ito formula for q ≥ 2mτ

h(t) = E ‖yλ
τ ‖

q
ℓmτ (dicτ )

= h(0)+

+q

∫ t

0

E ‖yλ
τ ‖

q−mτ

ℓmτ (dicτ )
< (yλ

τ )⋆, yλ
τ (−F ′

λy
λ
τ −Ayλ

τ − ϕF
τ ) >ℓmτ (dicτ ) ds+

+
q(mτ − 1)

2

∫ t

0

E ‖yλ
τ ‖

q−mτ

ℓmτ (dicτ ) < (yλ
τ )⋆, (B′

λy
λ
τ + ϕB

τ )2 >ℓmτ (dicτ ) ds+
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+
q(q −mτ )

2

∫ t

0

E ‖yλ
τ ‖

q−2mτ

ℓmτ (dicτ )

∑

k∈ZZd

d2i
k c

2
k,τ |y

λ
k,τ |

2(mτ−1)(B′
λy

λ
k,τ +ϕB

k,τ)
2ds

Inequality (7) and property 0 ≤ λ(·) ≤ 1 give that ∀M ∃KM

−F ′
λ(x) +M [B′

λ(x)]
2 = −λ(x)F ′(x) +Mλ2(x)[B′(x)]2 ≤

≤ −λ(x)F ′(x) +Mλ(x)[B′(x)]2 ≤ λ(x)KM ≤ KM

Using boundedness of ‖A‖L(ℓmτ (dicτ )) and inequalities

∑
|ukvk| ≤

∑
|uk|

∑
|vk|, |x|

m−p|y|p ≤
m− p

m
|x|m +

p

m
|y|m (44)

| < ζ⋆, xy >ℓm(c) | ≤
m− 2

m
‖ζ‖m

ℓm(c) +
1

m
‖x‖m

ℓm(c) +
1

m
‖y‖m

ℓm(c)

we obtain

h(t) ≤ h(0) + (q‖A‖ + qKq−1 + (q − 1)2)

∫ t

0

h(s)ds+

+

∫ t

0

E ‖ϕF
τ ‖

q
ℓmτ (dicτ )ds+ 2(q − 1)

∫ t

0

E ‖ϕB
τ ‖

q
ℓmτ (dicτ )ds (45)

For inductive base ϕF
τ ≡ ϕB

τ ≡ 0, |τ | = 1, therefore by Gronwall-

Bellmann inequality the statement of Step 2 holds for any i ≥ 0.

Inductive assumption (37) in any ℓmγ (d
icγ), |γ| < |τ |, (35) and

(42) give the boundedness of the last two terms in (45). Then the

application of Gronwall-Bellmann inequality finishes the proof of

(43).

Step 3. ∀i ≥ 0 ∀q ≥ 1 for functions λ, µ which fulfill (38) we have

sup
t∈[0,T ]

E ‖yλ
τ − yµ

τ ‖
q
ℓmτ (dicτ ) → 0, Nλ, Nµ → ∞ (46)
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Like in Step 2 by Ito formula for q ≥ 2mτ

h(t) = E ‖yλ
τ − yµ

τ ‖
q
ℓmτ (dicτ )

= −q
∫ t

0
E ‖yλ

τ − yµ
τ ‖

q−mτ

ℓmτ (dicτ )
×

×〈(yλ
τ − yµ

τ )⋆, (yλ
τ − yµ

τ ){F ′
λy

λ
τ − F ′

µy
µ
τ + A(yλ

τ − yµ
τ )}〉ds+

+ q(mτ−1)
2

∫ t

0
E ‖yλ

τ − yµ
τ ‖

q−mτ

ℓmτ (dicτ )
×

×〈(yλ
τ − yµ

τ )⋆, (B′
λy

λ
τ − B′

µy
µ
τ )2〉ℓmτ (dicτ )ds+

+ q(q−mτ )
2

∫ t

0
E ‖yλ

τ − yµ
τ ‖

q−2mτ

ℓmτ (dicτ )
×

×
∑

k∈ZZd

d2i
k c

2
k,τ |y

λ
k,τ − yµ

k,τ |
2(mτ−1)(B′

λy
λ
k,τ − B′

µy
µ
k,τ)

2ds

Using inequalities (44) and coordinate relations

F ′
λ(y

0)yλ
τ −F

′
µ(y0)yµ

τ = (λ(y0)−µ(y0))F ′(y0)yλ
τ +µ(y0)F ′(y0)(yλ

τ −y
µ
τ )

(B′
λ(y

0)yλ
τ −B′

µ(y0)yµ
τ )2 ≤

≤ 2µ2(y0)[B′(y0)]2(yλ
τ − yµ

τ )2 + 2(λ(y0) − µ(y0))2[B′(y0)]2(yλ
τ )2 ≤

≤ 2µ(y0)[B′(y0)]2(yλ
τ − yµ

τ )2 + 2(λ(y0) − µ(y0))2[B′(y0)]2(yλ
τ )2

we obtain

h(t) ≤ (q‖A‖ + (q − 1)2)
∫ t

0
h(s)ds+ q

∫ t

0
E ‖yλ

τ − yµ
τ ‖

q−mτ

ℓmτ (dicτ )
×

×〈(yλ
τ − yµ

τ )⋆, (yλ
τ − yµ

τ )2µ(y0){−F ′(y0) + (q − 1)[B′(y0)]2}〉 + ds

+

∫ t

0

E ‖(λ(y0) − µ(y0))F ′(y0)yλ
τ ‖

q
ℓmτ (dicτ )ds+ (47)

+2(q − 1)

∫ t

0

E ‖(λ(y0) − µ(y0))B′(y0)yλ
τ ‖

q
ℓmτ (dicτ )ds (48)
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Due to conditions (8)-(9) for 0 ≤ λ(·) ≤ µ(·) ≤ 1

|F ′(y0
k)(λ(y0

k) − µ(y0
k))| ≤ Kχ{|y0

k| ≥ Nλ}(1 + |y0
k|

2)
kF +1

2 ≤

≤ Ka
−(

kF +1

2
+ε)

k aε
kχ

2ε{|y0
k| ≥ Nλ}(ak + ak|y

0
k|

2)
kF +1

2 ≤

≤ Ka
−(

kF +1

2
+ε)

k [ak
|y0

k|
2

N2
λ

]ε(1 + ‖y0‖2
ℓ2(a))

kF +1

2 ≤

≤
Ka

−(
kF +1

2
+ε)

k

N2ε
λ

(1 + ‖y0‖2
ℓ2(a))

kF +1

2
+ε

(49)

where χ{A} denotes the characteristic function of set A.

Therefore for dk ≥ a
−(

kF +1

2
+ε)mτ

k we have estimate on (47)

sup
t∈[0,T ]

E ‖(λ(y0) − µ(y0))F ′(y0)yλ
τ ‖

q
ℓmτ (dicτ )

≤

≤ 1

N2εq
λ

Kq sup
t∈[0,T ]

E (1 + ‖y0‖2
ℓ2(a))

(
kF +1

2
+ε)q‖yλ

τ ‖
q
ℓmτ (di+1cτ ) → 0,

Nλ, Nµ → ∞

(50)

where we applied (35) and statement of Step 2. The analogous con-

vergence holds for term (48). Using 0 ≤ µ(·) ≤ 1 and (7) we have

h(t) ≤ (q‖A‖ + qKq−1 + (q − 1)2)

∫ t

0

h(s)ds+ δλ,µ

with δλ,µ → 0, Nλ, Nµ → ∞. By Gronwall-Bellmann inequality we

obtain (46).

Step 4. End of the proof: Theorem 4 is fulfilled for yτ in any space
ℓmτ (d

icτ ), i ≥ 0.
By Step 3 there is Ft-adapted ℓmτ (d

icτ )-valued process y#(t, x0;
x̃γ , γ ⊂ τ) such that ∀q ≥ mτ

sup
t∈[0,T ]

E ‖y#
τ − yλ

τ ‖
q
ℓmτ (dicτ )

→ 0, Nλ → ∞ (51)

To construct the strong solution yτ it is sufficient to prove that the

equation (39) converges to (21) in the topology (E sup
t∈[0,T ]

‖·‖q
ℓmτ (dicτ )

)1/q
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when Nλ → ∞. By Lemma 1 and choice B′
λ(x) = λ(x)B′(x)

(E sup
t∈[0,T ]

‖

∫ t

0

{B′
λ(y

0)yλ
τ − B′(y0)y#

τ }dW‖q
ℓmτ (dicτ ))

1/q ≤

≤ K
1/q
q,T T

1/q sup
t∈[0,T ]

(E ‖(λ(y0) − 1)B′(y0)yλ
τ ‖

q
ℓmτ (dicτ )

)1/q (52)

+K
1/q
q,T T

1/q sup
t∈[0,T ]

(E ‖B′(y0)(yλ
τ − y#

τ )‖q
ℓmτ (dicτ )

)1/q (53)

Like in (50) the term (52) tends to zero at Nλ → ∞. To the

second term we apply [2, Theorem 4.15]

(53) ≤ C sup
t∈[0,T ]

[E (1 + ‖y0‖ℓ2(a))
q(kF +1)‖yλ

τ − y#
τ ‖

q
ℓmτ (di+1cτ )]

1/q → 0,

Nλ → ∞.

Above we also used (51) and (35). Therefore the stochastic integral in

(39) converges to the stochastic integral in (21) and gives ℓmτ (d
icτ )-

pathwise continuous martingale. The convergence of continuous finite

variation part of (39) to the corresponding part of (21) is checked in

a similar way.

We obtain, that the r.h.s. of (39) converges in topology (E sup
t∈[0,T ]

‖·

‖q
ℓmτ (dicτ )

)1/q, thus the l.h.s. yλ
τ of (39) also has a limit in the same

topology: ∃ yτ such that yλ
τ → yτ , Nλ → ∞. Such convergence

improves (51) and provides a necessary strong solution yτ as ℓmτ (d
icτ )

pathwise continuous modification of y#
τ .

The uniqueness of strong solution yτ is proved by induction on

|τ |. Suppose that we have shown the uniqueness for all |γ| < |τ |. By

Ito formula for two different solutions y1
τ and y2

τ we have in analogue

to Step 3

h(t) = E ‖y1
τ − y2

τ‖
q
ℓmτ (dicτ ) ≤ q‖A‖

∫ t

0
h(s)ds+

+q
∫ t

0
E ‖y1

τ − y2
τ‖

q−mτ

ℓmτ (dicτ )

∑
k∈ZZd

di
kck,τ |y

1
k,τ − y2

k,τ |
mτ×

×{−F ′(y0
k) + (q − 1)[B′(y0

k)]
2} ≤ (q‖A‖ + qKq−1)

∫ t

0
h(s)ds
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where we used (7). By h(0) = 0 we obtain h(t) ≡ 0 which gives the

uniqueness.

It remains to show estimate (37). By Ito formula for strong

solution yτ to (21) and by (44)

h(t) = E ‖yτ(t)‖
q
ℓmτ (dicτ ) ≤ ‖x̃τ‖

q
ℓmτ (dicτ )+

(q‖A‖ + (q − 1)2)
∫ t

0
h(s)ds+ q

∫ t

0
E ‖yτ(t)‖

q−mτ

ℓmτ (dicτ )
×

×
∑

k∈ZZd

di
kck,τ |yk,τ |

mτ{−F ′(y0
k) + (q − 1)[B′(y0

k)]
2}ds+

+
∫ t

0
E ‖ϕF

τ ‖
q
ℓmτ (dicτ )

ds+ 2(q − 1)
∫ t

0
E ‖ϕB

τ ‖
q
ℓmτ (dicτ )

ds

We use (35), (7) and inequality (42) to obtain

h(t) ≤ ‖x̃τ‖
q
ℓmτ (dicτ )

+K(R)+

+(q‖A‖ + qKq−1 + (q − 1)2)
∫ t

0
h(s)ds

(54)

and therefore (37), which ends the proof of Theorem 4. 2

4. Nonlinear estimate on variations (Proof of
Theorem 2).

First we restrict to the case x0 ∈ ℓ
2(kF +1)2+ε

(a), ε > 0, i.e. when

y0 is a strong solution in the sense of Theorem 3. Introduce notations

hi
τ (y; t) = E

i∑

s=1

[ps(zt)
∑

γ⊂τ, |γ|=s

‖yγ‖
mγ

ℓmγ (cγ)], i = 1, ..., |τ |

gγ(t) = E pi(zt)‖yγ(t)‖
mγ

ℓmγ (cγ), |γ| = i (55)

If we prove that for all γ ⊂ τ, |γ| = i and i = 1, ..., |τ |

gγ(t) ≤ eD1tgγ(0) +D2

∫ t

0

eD1(t−s)hi−1
τ (y; s)ds (56)

then we will have the recurrence base and step for the statement of

Theorem at i = |τ |.
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By Ito formula

gγ(t) = gγ(0) −

∫ t

0

E ‖yγ‖
mγ

ℓmγ (cγ)(H
F,Bpi)(zs)ds−

−mγ

∫ t

0

E pi(zs) < y⋆γ , yγ[F
′(y0)yγ + Ayγ + ϕF

γ ] >ℓmγ (cγ) ds+

+
mτ (mτ − 1)

2

∫ t

0

E pi(zs) < y⋆γ , [B
′(y0)yγ + ϕB

γ ]2 >ℓmγ (cγ) ds+

+2mγ

∫ t

0

E p′i(zs)
∑

k∈ZZd

akck,γy
0
kB(y0

k)|yk,γ|
mγ−2yk,γ{B

′(y0
k)yk,γ +ϕB

k,γ}ds

where we used notation (31) and operator HF,B acts on smooth

function f(·) by rule

(HF,Bf)(x) =
∑

k∈ZZd

{−
1

2
B2(xk)

∂2

∂x2
k

+ (F (xk) + (Ax)k)
∂

∂xk
}f(x)

Immediately remark that for functions p which fulfills (27) the fol-

lowing property takes place

∃C1 ∈ IR HF,Bp(z) ≥ −C1p(z) (57)

for z = 1 + ‖x‖2
ℓ2(a). Indeed,

HF,Bp(z) =
∑

k∈ZZd

ak{2F (xk)xk −B2(xk) − 2(Ax)kxk}p
′(z)−

−
∑

k∈ZZd

2a2
kB

2(xk)x
2
kp

′′
i (z) ≥ −2‖A‖L(ℓ2(a))zp

′(z)+

+
∑

k∈ZZd

ak{2F (xk)xk − B2(xk)}p
′(z) − 2z|p′′i (z)|

∑
k∈ZZd

akB
2(xk) ≥

≥ −2‖A‖Cp(z) +
∑

k∈ZZd

ak{2F (xk)xk − (1 + 2C)B2(xk)}p
′(z) ≥

≥ −2‖A‖Cp(z) +
∑

k∈ZZd

ak{−K1x
2
k −K2}p

′(z) ≥

≥ −(2‖A‖C + (K1 +K2)C)p(z) ≡ −C1p(z)
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where we successively applied
∑

|ukvk| ≤
∑

|uk|
∑

|vk|, (27), (6) and∑
ak = 1.

Using (44) and (57) we obtain

gγ(t) ≤ gγ(0) + (C1 +mγ‖A‖ + (mγ − 1)2)

∫ t

0

gγ(s)ds+

+mγ

∫ t

0

E pi(zs)〈y
⋆
γ , y

2
γ{−F

′(y0
k) + (mγ − 1)[B′(y0

k)]
2}〉ℓmγ (cγ)ds+

+
∫ t

0
Epi(zs)‖ϕ

F
γ ‖

mγ

ℓmγ (cγ)ds+

+2(mγ − 1)
∫ t

0
Epi(zs)‖ϕ

B
γ ‖

mγ

ℓmγ (cγ)ds+

(58)

+2mγK4

∫ t

0

E zsp
′
i(zs) < y⋆γ , (1 + [B′(y0)]2)y2

γ >ℓmγ (cγ) ds+

+2mγK3

∫ t

0

E zsp
′
i(zs) < y⋆γ , (1 + |B′(y0)|)yγϕ

B
γ >ℓmγ (cγ) ds

Assumption (27), applied to (58), (27) and (7) lead to

gγ(t) ≤ gγ(0) + (C1 +mγ‖A‖ + (mγ − 1)2 + 2mγK4C+

+2K3C(mγ − 1) +mγKmγ−1+2K4C)
∫ t

0
gγ(s)ds+

+
∫ t

0
Epi(zs)‖ϕ

F
γ ‖

mγ

ℓmγ (cγ)ds+2(mγ−1)
∫ t

0
E pi(zs)‖ϕ

B
γ ‖

mγ

ℓmγ (cγ)ds+

+2K3C
∫ t

0
E pi(zs)‖(1 + |B′(y0)|)ϕB

γ ‖
mγ

ℓmγ (cγ)ds

(59)

All terms in (59) have the same structure
∫ t

0

E pi(zs)‖
∑

α1∪...∪αs=γ, s≥2

D
s(y0)yα1

...yαs‖
mγ

ℓmγ (cγ)ds (60)

where function D
s(·) = F (s)(·), B(s)(·) or (1 + |B′(·)|)B(s)(·). Using

condition (8)-(9) and property 2kB ≤ kF we estimate (60) by

(60) ≤ K1

∑

α1∪..∪αs = γ,
s ≥ 2

∫ t

0

E pi(zs) ×

×
∑

k∈ZZd

ck,γ[D
s(y0

k)]
mγ |yk,α1

|mγ ...|yk,γs|
mγds ≤
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≤ K1

∑
...

∫ t

0
E pi(zs)

∑
k∈ZZd

ck,γa
−
kF +1

2
mγ

k ×

×(ak + ak|y
0
k|

2)
kF +1

2
mγ |yk,α1

|mγ ...|yk,αs|
mγds ≤

(61)

≤ K1

∑

α1∪..∪αs =γ,
s ≥ 2

∫ t

0

E pi(zs)z
kF +1

2
mγ

s ×

×
∑

k∈ZZd

ck,γa
−
kF +1

2
mγ

k |yk,α1
|mγ ...|yk,αs|

mγds

By hierarchies (26), (28) we obtain

(61) ≤ K1K
1/|γ|
p ×

×
∑

α1∪..∪αs = γ,
s ≥ 2

K
1/|γ|
α1,...,αs;γ

∫ t

0
E
∑

k∈ZZd

{p|αi|(zs)ck,αi
|yk,αi

|mαi}|αi|/|γ|ds ≤

≤ K1K
1/|γ|
p

∑

...

K1/|γ|
α1,...,αs;γ

s∑

i=1

E

∫ t

0

p|αi|(zs)‖yαi
‖

mαi

ℓmαi
(cαi)

ds ≤

≤ K1K
1/|γ|
p 2|τ | max

α1∪...∪αs=γ⊂τ
K

1/|γ|
α1∪...∪αs;γ h

i−1
τ (y; t)

Here we used ∀j = 1, ..., s |αi| < |γ| and inequality |x1...xs| ≤
|x1|

q1/q1 + ... + |xs|
qs/qs with qj = |γ|/|αj|. Finally we have

gγ(t) ≤ gγ(0) +D1

∫ t

0

gγ(s)ds+D2

∫ t

0

hi−1(y; s)ds

which leads to (56) and proves the quasi-contractive nonlinear estimate

for x0 ∈ ℓ
2(kF +1)2+ε

(a), ε > 0. The closure to x0 ∈ ℓ2(a) is done with

application of estimates (36), (62) and polynomiality of pi. 2

5. Regularity of variations and Proof of Theorem
1.
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Before the study the differentiability of y0(t, x0) on variable x0

we obtain the continuity of variations with respect to initial data

x0. This result will be applied to close the nonlinear estimate on

variations from x0 ∈ ℓ
p(k+1)2+ε

(a) to x0 ∈ ℓ2(a) and to prove C∞-

differentiability of y0
t (x

0) with respect to the initial data x0.

Theorem 5. Let m1 > |τ |, mγ = m1/|γ|, vectors {cτ} ⊂ IP fulfill
(26) and x̃γ be zero-one initial data (23). Then ∀q ≥ mτ ∀R >
0 ∃Kτ (R) such that ∀x0, y0 ∈ ℓ2(a) the variations fulfill

sup
t∈[0,T ]

E ‖yτ(t, x
0; x̃γ , γ ⊂ τ) − yτ(t, y

0; x̃γ, γ ⊂ τ)‖q
ℓmτ (cτ ) ≤

≤ Kτ (R)‖x0 − y0‖q
ℓ2(a)

(62)

with R = max(‖x0‖ℓ2(a), ‖y
0‖ℓ2(a), ‖x̃γ‖ℓmγ (dcγ)) for dk ≥ a

−
kF +1

2
m1

k ,

k ∈ ZZd.

Proof is similar to the proof of nonlinear estimate on variations and

proceeds with application of Ito formula instead of pathwise estimates

of [2, Th.4.18]. 2

To obtain the integral representation of Theorem 6, we need

the following Lemma, which gives uniform on |τ | ≤ n0 estimates on

variations. This result is also required for the study the high order

differentiability of the stochastic flow and heat semigroup Pt.

Lemma 2. Under conditions (5)-(9) for zero-one initial data x̃γ (23)
we have

∀ψ ∈ IP ∀n ≥ 1 ∀q ≥ 1 ∃Kn(R,ψ, q) such that

sup
t∈[0,T ]

E |yk,τ(t, x
0, x̃γ)|

q ≤ Kn(R,ψ, q)a
−
kF +1

2
q(|τ |−1)

k

∏

j∈τ

ψ−1
k−j (63)

sup
t∈[0,T ]

E |yk,τ(t, x
0, x̃γ) − yk,τ(t, y

0, x̃γ)|
q ≤

≤ Kn(R,ψ, q)a
−
kF +1

2
q(2|τ |−1)

k

∏
j∈τ

ψ−1
k−j‖x

0 − y0‖q
ℓ2(a)

(64)

with R = max(‖x0‖ℓ2(a), ‖y
0‖ℓ2(a)).
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Proof uses a special choice of weights c̃k,γ = a
kF +1

2
m1

|γ|−1

|γ|

k

∏
j∈γ

ψk−j ,

γ ⊂ τ with m1
def
= q|τ | and coincides with proof of [2, Corollary 4.19].

It can be omitted. 2

Now we turn to the differentiability of process y0 (4) with respect

to the initial data.

Theorem 6. Let F,B satisfy conditions (5)-(9). Then ∀x0 ∈ ℓ2(a),
zero-one initial data x̃γ (23) and h ∈ AC([a, b]) for all t ∈ [0, T ] and
P a.e. ω ∈ Ω the path

χ0(·) = y0(t, x0 + h(·)) − y0(t, x0 + h(a)) ∈ AC([a, b])

In particular, in any space ℓp(c), c ∈ IP , p ≥ 1 its derivative is given
by first order variation

y0(t, x0 + h(·))

b

a

= ℓp(c)

∫ b

a

∑

j∈ZZd

y{j}(t, x
0 + h(s))h′j(s)ds (65)

Space AC([a, b]) was introduced in (16).

Proof. First we prove representation (65) for initial data x0 ∈
ℓ
m1(kF +1)2+ε

(a), ε > 0, in space Lq(Ω,P, ℓm1
(c1)), q ≥ 1, with vector

c1 ∈ IP such that dkck,1 ≤ ak for dk ≥ a
−
kF +1

2
m1

k . Due to Theorem

3 for x0 ∈ ℓ
m1(kF +1)2+ε

(a), ε > 0, there is a strong solution y0 to

equation (4) in space with topology E sup
t∈[0,T ]

‖ · ‖q
ℓm1

(a) and estimate

holds E ‖y0(t, x0) − y0(t, y0)‖q
ℓm1

(a) ≤ eCqt‖x0 − y0‖q
ℓm1

(a). Inequality

‖ · ‖ℓm1
(c1) ≤ ‖ · ‖ℓm1

(a) implies that for function h ∈ AC([a, b]) the

map [a, b] ∋ s → y0(t, x0 + h(s)) ∈ Lq(Ω,P, ℓm1
(c1)) is absolutely

continuous. The theory of absolutely continuous functions in reflexive

Banach space gives that for a.e. s ∈ [a, b] there is Lq(Ω,P, ℓm1
(c1))

strong derivative
d

ds
y0(t, x0 + h(s)) and representation holds

y0(t, x0 + h(·))

b

a

= Lq(Ω,P, ℓm1
(c1))

∫ b

a

d

ds
y0(t, x0 + h(s))ds (66)
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To reconstruct the strong derivative let us show that for h ∈
AC([a, b]) and a.e s ∈ [a, b] such that

lim
α→0

‖
h(s+ α) − h(s)

α
− h′(s)‖ℓm1

(a) = 0

the convergence holds

sup
t∈[0,T ]

E

∥∥∥∥
y0

k(t, x
0 + h(s+ α)) − y0

k(t, x
0 + h(s))

α
−

−
∑

j∈ZZd

yk,{j}(t, y
0)h′j(s)

∥∥∥∥∥

q

ℓm1
(c1)

→ 0, α→ 0

Further proof coincides with the proof of [2, Th.4.20] with use

of Ito formula instead of pathwise estimates. 2

Next Theorem states any order differentiability of process y0(t, x0).

Theorem 7. Let F,B fulfill conditions (5)-(9). Then ∀x0 ∈ ℓ2(a),
zero-one initial data x̃γ (23) and h ∈ AC([a, b]) (16) we have for all
t ∈ [0, T ], P a.e. ω ∈ Ω and ∀k ∈ ZZd, ∀τ the path

χk,τ(·) = yk,τ(t, x
0 + h(·)) − yk,τ(t, x

0 + h(a)) ∈ AC([a, b], IR1)

In particular different order variations are related by

yk,τ(t, x
0 + h(·))

b

a

=

∫ b

a

∑

j∈ZZd

yk,τ∪{j}(t, x
0 + h(s))h′j(s)ds

Proof. Like in the proof of Theorem 6 we first consider initial data

x0 ∈ ℓ
m1(kF +1)2+ε

(a), ε > 0, for some m1 > |τ |. Choose vectors

{cn}n≥1 so that

∀k ∈ ZZd ck,n+1dk ≤ ck,n, ck,1dk ≤ ak (67)

with dk ≥ a
−
kF +1

2
m1

k . These vectors obviously satisfy condition (26).

Introduce notation X|τ | = ℓmτ (c|τ |). Applying Theorem 5 in scale

{X|τ |} and inequality ‖ · ‖X
|τ |+1

≤ const‖ · ‖X
|τ |

we have the absolute

continuity of the map

[a, b] ∋ s→ yτ(t, x
0 + h(s)) ∈ Lq(Ω,P, X|τ |+1)
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for any t ∈ [0, T ] and h ∈ AC([a, b]). The theory of absolutely conti-

nuous functions implies the existence of strong derivative

Lq(Ω,P, X|τ |+1)
d

ds
yτ(t, x

0 + h(s)) for a.e. s ∈ [a, b]

and gives representation

yτ (t, x
0 + h(·))

b

a

= Lq(Ω,P, X|τ |+1)

∫ b

a

d

ds
yτ (t, x

0 + h(s))ds (68)

If we prove by induction on |τ | that for a.e. s ∈ [a, b] such that

∃ lim
α→0

‖
h(s+ α) − h(s)

α
− h′(s)‖ℓm1

(a) = 0 (69)

the convergence holds

sup
t∈[0,T ]

E

∥∥∥∥
yk,τ(t, x

0 + h(s+ α)) − yk,τ(t, x
0 + h(s))

α
−

−
∑

j∈ZZd

yk,τ∪{j}h
′
j(s)

∥∥∥∥∥

q

X
|τ |+1

→ 0

(70)

for α → 0, then the representation (68) will lead to

yτ (t, x
0+h(·))

b

a

= Lq(Ω,P, X|τ |+1)

∫ b

a

∑

j∈ZZd

yτ∪{j}(t, x
0+h(s))h′j(s)ds

This gives the P a.e. coordinate equality: ∀k ∈ ZZd

yk,τ(t, x
0 + h(·))

b

a

=

∫ b

a

∑

j∈ZZd

yk,τ∪{j}(t, x
0 + h(s))h′j(s)ds (71)

with integrable for P a.e. ω ∈ Ω right hand side

∑

j∈ZZd

yk,τ∪{j}(t, x
0 + h(·))h′j(·) ∈ L1([a, b], IR

1) (72)

Further proof proceeds similar to [2, Th.4.21], with the use of

Ito formula for convergence (70) instead of pathwise estimates.



128 A.Val. Antoniouk, A.Vict. Antoniouk

The developed above technique is sufficient for the study of

differentiable properties of Feller semigroup Pt (10).

Proof of Theorem 1. It completely coincides with one, conducted in

[2, § 4.6] for the unit diffusion case. The only difference is that, using

representation

∂τPtf(x0) =

|τ |∑

σ=1

∑

γ1∪...∪γσ=τ

E < ∂(σ)f(y0), yγ1
⊗ ...⊗ yγσ > (t, x0) (73)

with variations yγ (21) and

< ∂(σ)f(y0), yγ1
⊗ ...⊗ yγσ > (t, x0) =

=
∑

j1,...,jσ∈ZZd

∂{j1,...,jσ}f(y0(t, x0))yj1,γ1
(t, x0)...yjσ,γσ(t, x0)

one should use existence of majorant to show the measurability of

derivatives ∂τPtf(x). 2
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